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Conformal Prediction 101

@ Goal: Distribution-free uncertainty quantification in future
observations of ANY black-box prediction models/algorithms

@ How? Construct prediction sets that contain the ground-truth output
with high probability
i.e. finite-sample coverage guarantees in terms of coverage level 1 — «

@ How? Build a wrapper on top of black-box algos by converting
prediction values into prediction sets.

@ Setup: Assume having access to a calibration set (X;, Y;),i=1,...,n
the model hasn't seen, then given a new test point (Xp+1, Ynt1),
construct a prediction set C,, such that

P (Yn+1 cl, (X,,+1)) >l-asP (Y,,+1 ¢C, (Xn+1)) <a
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Key idea: use rank to form adjusted quantiles

@ Denote conformity score s(x, y) as a (dis)agreement metric, e.g.,
absolute residual in regression, then the prediction set is formed by

CAn (Xn—I—l) = {y : S(Xn-i-la)/) < é\ln}

® g, is the w quantile of s(X1, Y1),...,s(Xn, Yn), that is,
[(1 —a)(n+1)] smallest of s(Xi, Y1),...,5(Xn, Yn))

@ Key assumption: exchangeability of scores s(X;, Y;),i=1,...,n+1

@ Then, the rank of s,11 is uniformly distributed over {1,...,n+ 1}
. . . ‘ ... . DR .
W @ B @ ST(1-a)(n+1)] S(n+1)

> 1 — « fraction

o = P(s(Xnt1, Ynt1) <Gn) € |1 —a,1 —a+ %H)
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Regression Example

A Taste of Conformal Prediction by Emmanuel Candes starting at 10:12


https://www.youtube.com/watch?v=YzTzN3RyFrk&t=1944s

Split & Full Conformal Prediction

o Statistical & Computational tradeoff: how to exploit accessible data
{Xi, Yi}i_, at hand?
e Split CP:
e split data into training set D; & calibration set D,
D1UD2:{1,...,I7};,D10D2 :Q)
o fit prediction model fp, using D;, compute scores using D
e train model once (fast), but lose statistical efficiency due to the sample
splitting (only use half the data points to fit the model)
e Full CP:

e use all data points for training and calibration via leave-one-out fitting

o fit model f_,- using all data except (Xj, Y;), and compute score s; for
eachi=1,...,n

o train model n times (expensive), but get exact coverage with tighter
prediction sets

@ Exchangeability needed for both! (Counterexamples: time series,
covariate shift, heteroscedastic data = modified CP methods)
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Concrete Algorithm (Full CP, split as a special case)

© Propose a test query value y
@ Pick any conformity score s(x, y) (residual score s(x,y) = |y — i(x)])
o

Fit model to all n+ 1 data via a symmetric algorithm to
(Xla Yl) 5 (X27 Y2) Y (Xn+17y) ~S (Xia \//)

Q@ Compute quantile §, = Qra-wwiv (S (Xi, V7))
note: Q1o {si: i € Zca } for split CP
@ If S(Xh11,¥) < §p, include y in prediction set Cn



Review of Statistical Decision Theory

Let z = (z1,...,2y) be a set of calibration data {(x;, y;)}"_;. Denote 6 as

the likelihood parameter and \(z) as a control parameter chosen based on

z. Loss L(6, A(2)) is incurred by selecting A when the true nature is 6.
@ risk

R(0,\) = / L(0,\(2))f(z | 0)dz

@ maximum risk

R(A\) =sup R(6, \)
0
@ average risk

r(m, ) = / R(0, \)m(0)d0

@ posterior risk
M| 2) = E(Ly | 2) _/L(G,)\(z))w(ﬁ | 2)do

e Find X to control F(\) £ sup_. r(m, \) = supy R(6,\) = R()\) < a
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Conformal Risk Control (Angelopoulos et al, 2024)

@ Generalize to per-sample loss functions ¢(z,\) = £(Cy (x),y) that are
assumed to be monotonic of a single parameter A. The risk is

R(O, )\) = /E(Znewa )\) (Znew | 9) dznew = IEf(z|0) [E (C)\( n+1) YnJrl)]

@ Goal: control expected loss (risk) under minimal assumptions
(exchangeability), e.g., false positive rate, F1 score, conditional error

E[¢ (CAC,C (Xn+1), Yor1)] <

B
)\crc mf{ 1Z£ iy A +1§04}

where B is assumed to be the maximum possible loss value.
¢(z,\) measures how well the conformal set C(x;) covers true label y;,
n}rl ST 1 U(zi, \) empirical risk, +1 correction term by exchangeability.
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Bayesian Quadrature

A class of probabilistic numerical methods viewing numerical integration of
fab f(x)dx as Bayesian inference in the following steps:

© Place a prior p(f) on functions ,e.g., Gaussian process;
@ Evaluate f at x1,...,x, yi = f(x);
© Compute posterior given the observed values of
p (f | X1, y1:n) o< p(F) Ty 6 (vi — £ (%0));
@ Estimate

b b
/af(x)dm/a (), £o(£) = E[F(£) | xtm, yion]
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Paper Motivation: Marginal — Conditional Coverage

@ Marginal coverage:
P (Vo1 € Co(Xnrn) | (X, Y0),i€D1) € [1— a1 —a+ 1)

n+1
The probability or expectation P, [E is over both calibration and test
data i =1,...,m + 1 = coverage guaranteed in aggregate over

multiple calibration sets (model trained, test data fixed), but the
guarantee might not hold for each set in particular
o Conditional coverage on each calibration set?

P (Y,,+1 € Co(x) | (Xi,Y3),i € Dy U Dy, Xpi1 = x> >1-a
Risk: 9.9% Per-split risk (mean: 9.9%)
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Quantile as Random Variable

@ By change of variable u = F(x), the expectation of a random variable
X is the integral of its quantile function over its domain

E[X] = /OO xf(x)dx = /01 Q(u)du
@ Consider the conditional CDF of loss functions given 6
F(£)0) = P{l(znew A\ < L]0}
@ The corresponding quantile function is
Ko(t) = F, 1(t) = inf{l: Fy() > t}
@ Loss / as a random variable, then the expected loss is

1
E[t(z, \)] £ J[K] = /O K(t)dt

as a functional of the latent quantile function K(t)
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Reformulate CP as BQ

@ Idea: Instead of working directly on p(6 | z1.,), reparametrize the
model using Bayesian Quadrature for quantile function
@ Recall the expected loss (risk) over future data is

L(Q, )\) = /E (ZneWa )\) f (Znew ’ ‘9) dZnew = 1Ez|9 [E(ZneW7 )‘)] £ J[K]
@ The posterior risk given the observed individual losses ¢; = ¢(z;, \) is
KA | 212n) = E[L | 21:0] = /L(H,)\)p(ﬁ | 21.0) d6
=E[L]| l1.n] = /J[K]p(K | 01.n)dK
@ The posterior over quantile functions is

p(K ’ él:n) = /P(K ’ tl:naél:n)p(tl:n | gl:n) dtl:n

(K’tlnygln O(7T H(S



Remove Prior Specification by an Upper Bound

@ But to be assumption-free, we need to avoid specifying prior p(K)!
@ An upper bound on the posterior risk by the right rectangular rule

Theorem 4.1
Let to) = 0, tn+1) = 1, and E(n—i—l) = B. Then

n+1

sup E (L | t1:p, £1:0) < Z uil(i)
T i=1

where u; = iy — ti-1)-

@ LHS = worst posterior risk

@ RHS = piecewise-constant numerical quadrature approximation as a
weighted sum of the observed losses by the spacing between
consecutive quantiles
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[[lustration
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Figure: Left: Bayesian quadrature places a prior over the quantile function of the
loss distribution. In practice, quantile levels are not observed.

Middle: quantile spacings with a right rectangular integration rule to construct an
upper bound on the posterior distribution of the expected loss. Randomly
sampled spacings and corresponding quantile functions are shown in blue along
with a 95% credible interval for each quantile level in black.

Right: The posterior distribution for a random variable L™ that upper bounds the
expected loss is constructed by integrating over the unknown quantile levels ty.,.
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[[lustration of Theorem 4.1
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Figure: Regardless of priors, the stepwise function gives an upper bound on the
risk (in black)

16 /19



Dirichlet Quantile Spacings & Bound Maximum Risk

@ Note that we only observe the loss values /¢;.,, not the quantiles tj.,

@ It turns out the distribution of quantile spacings follows a Uniform
Dirichlet Dir(1,...,1), independent of the loss distribution.

Theorem 4.3

Define £(;) to be the order statistics of ¢1,...,¢, for i=1,...,n and
U(ny1) £ B. Let LT be the random variable defined as follows:

n+1
Ur,..., Uns1 ~ Dir(1,..., 1), L7 =) " Uil
i=1

Then for any b € (—o0, B],

inf Pr (L < b | £1.,,) > Pr (Lt < b)

L™ stochastically dominates posterior risk (density of LT more at the right)
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[llustration of Theorem 4.3

lllustration: Posterior risk vs conservative bound L *
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Recover Conformal Methods by Posterior Mean

Then we can directly construct upper confidence bounds as follows:

Corollary 4.4

For any desired coverage level 1 — v € (0,1), define

bi o =inf {b:Pr(L* <b|f,) >1-a}.

Then inf Pr(L < b|{1.n) >1—a forany b> by_,.

The expected value of L™ recovers conformal methods:
e Split CP:
k

1 n
E(L+):m(n+l—ZH‘{si§5(k)}> :1—n+1

i=1

@ Conformal Risk Control:
n+1 1 n

E(LF) :ZE(U,-)e(,-): — Z£;+B
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