

Conformal Prediction as Bayesian Quadrature

by Snell & Griffiths, ICML 2025 Outstanding Paper

Presenter: Yichen Ji

November 11, 2025

Overview

1 Background Check

- Conformal Prediction
 - Split & Full Conformal Prediction
 - Statistical Decision Theory
 - Conformal Risk Control
- Bayesian Quadrature

2 Paper's Approach

- Motivation: Conditional Coverage, More than Marginal Coverage
- Reformulate CP as BQ
- Remove Prior Specification by an Upper Bound
- Dirichlet Quantile Spacings & Bound Maximum Risk
- Recover Conformal Methods by Posterior Mean

Conformal Prediction 101

- Goal: Distribution-free uncertainty quantification in future observations of ANY black-box prediction models/algorithms
- How? Construct **prediction sets** that contain the ground-truth output with high probability
i.e. finite-sample **coverage** guarantees in terms of coverage level $1 - \alpha$
- How? Build a wrapper on top of black-box algos by converting prediction values into prediction sets.
- Setup: Assume having access to a **calibration set** $(X_i, Y_i), i = 1, \dots, n$ the model hasn't seen, then given a new test point (X_{n+1}, Y_{n+1}) , construct a prediction set $\hat{\mathcal{C}}_n$ such that

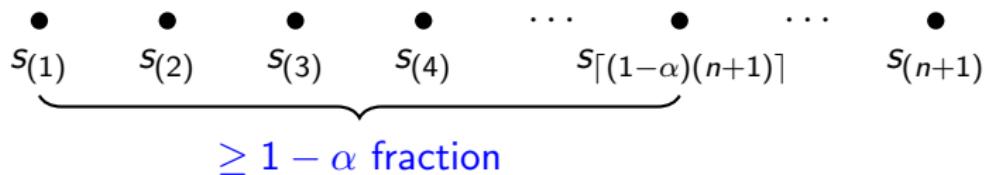
$$\mathbb{P} \left(Y_{n+1} \in \hat{\mathcal{C}}_n (X_{n+1}) \right) \geq 1 - \alpha \Leftrightarrow \mathbb{P} \left(Y_{n+1} \notin \hat{\mathcal{C}}_n (X_{n+1}) \right) \leq \alpha$$

Key idea: use rank to form adjusted quantiles

- Denote **conformity score** $s(x, y)$ as a (dis)agreement metric, e.g., absolute residual in regression, then the prediction set is formed by

$$\hat{\mathcal{C}}_n(X_{n+1}) = \{y : s(X_{n+1}, y) \leq \hat{q}_n\}$$

- \hat{q}_n is the $\frac{\lceil (1-\alpha)(n+1) \rceil}{n}$ quantile of $s(X_1, Y_1), \dots, s(X_n, Y_n)$, that is, $\lceil (1-\alpha)(n+1) \rceil$ smallest of $s(X_1, Y_1), \dots, s(X_n, Y_n)$
- Key assumption: **exchangeability** of scores $s(X_i, Y_i), i = 1, \dots, n+1$
- Then, the rank of s_{n+1} is uniformly distributed over $\{1, \dots, n+1\}$



- $\implies \mathbb{P}(s(X_{n+1}, Y_{n+1}) \leq \hat{q}_n) \in \left[1 - \alpha, 1 - \alpha + \frac{1}{n+1}\right)$

Regression Example

A Taste of Conformal Prediction by Emmanuel Candès starting at 10:12

Split & Full Conformal Prediction

- Statistical & Computational tradeoff: how to exploit accessible data $\{X_i, Y_i\}_{i=1}^n$ at hand?
- Split CP:
 - **split** data into training set D_1 & calibration set D_2
 $D_1 \cup D_2 = \{1, \dots, n\}$, $D_1 \cap D_2 = \emptyset$
 - fit prediction model \hat{f}_{D_1} using D_1 , compute scores using D_2
 - train model once (**fast**), but lose statistical efficiency due to the sample splitting (only use half the data points to fit the model)
- Full CP:
 - use all data points for training and calibration via **leave-one-out** fitting
 - fit model \hat{f}_{-i} using all data except (X_i, Y_i) , and compute score s_i for each $i = 1, \dots, n$
 - train model n times (**expensive**), but get exact coverage with tighter prediction sets
- Exchangeability needed for both! (Counterexamples: time series, covariate shift, heteroscedastic data \Rightarrow modified CP methods)

Concrete Algorithm (Full CP, split as a special case)

- ① Propose a test query value y
- ② Pick any conformity score $s(x, y)$ (residual score $s(x, y) = |y - \hat{\mu}(x)|$)
- ③ Fit model to all $n + 1$ data via a symmetric algorithm to $(X_1, Y_1), (X_2, Y_2), \dots, (X_{n+1}, y) \sim S(X_i, Y_i)$
- ④ Compute quantile $\hat{q}_n \triangleq Q_{\frac{\lceil(1-\alpha)(n+1)\rceil}{n}}(S(X_i, Y_i))$
note: $Q_{1-\alpha}\{s_i : i \in \mathcal{I}_{\text{cal}}\}$ for split CP
- ⑤ If $S(X_{n+1}, y) \leq \hat{q}_n$, include y in prediction set $\hat{\mathcal{C}}_n$

Review of Statistical Decision Theory

Let $z = (z_1, \dots, z_n)$ be a set of calibration data $\{(x_i, y_i)\}_{i=1}^n$. Denote θ as the likelihood parameter and $\lambda(z)$ as a control parameter chosen based on z . Loss $L(\theta, \lambda(z))$ is incurred by selecting λ when the true nature is θ .

- risk

$$R(\theta, \lambda) = \int L(\theta, \lambda(z))f(z \mid \theta)dz$$

- maximum risk

$$\bar{R}(\lambda) = \sup_{\theta} R(\theta, \lambda)$$

- average risk

$$r(\pi, \lambda) = \int R(\theta, \lambda) \pi(\theta) d\theta$$

- posterior risk

$$r(\lambda \mid z) = E(L_{\lambda} \mid z) = \int L(\theta, \lambda(z)) \pi(\theta \mid z) d\theta$$

- Find λ to control $\bar{r}(\lambda) \triangleq \sup_{\pi} r(\pi, \lambda) = \sup_{\theta} R(\theta, \lambda) = \bar{R}(\lambda) \leq \alpha$

Conformal Risk Control (Angelopoulos et al, 2024)

- Generalize to per-sample loss functions $\ell(z, \lambda) \equiv \ell(\mathcal{C}_\lambda(x), y)$ that are assumed to be **monotonic** of a single parameter λ . The risk is

$$R(\theta, \lambda) = \int \ell(z_{\text{new}}, \lambda) f(z_{\text{new}} \mid \theta) dz_{\text{new}} = \mathbb{E}_{f(z \mid \theta)} [\ell(\mathcal{C}_\lambda(X_{n+1}), Y_{n+1})]$$

- Goal: control expected loss (risk) under minimal assumptions (exchangeability), e.g., false positive rate, F1 score, conditional error

$$\mathbb{E} [\ell(\mathcal{C}_{\lambda_{\text{crc}}}(X_{n+1}), Y_{n+1})] \leq \alpha$$

$$\lambda_{\text{crc}} \triangleq \inf \left\{ \lambda : \frac{1}{n+1} \sum_{i=1}^n \ell(z_i, \lambda) + \frac{B}{n+1} \leq \alpha \right\}$$

where B is assumed to be the maximum possible loss value.

$\ell(z, \lambda)$ measures how well the conformal set $\mathcal{C}(x_i)$ covers true label y_i , $\frac{1}{n+1} \sum_{i=1}^n \ell(z_i, \lambda)$ empirical risk, $\frac{B}{n+1}$ correction term by exchangeability.

Bayesian Quadrature

A class of probabilistic numerical methods viewing numerical integration of $\int_a^b f(x)dx$ as Bayesian inference in the following steps:

- ① Place a prior $p(f)$ on functions ,e.g., Gaussian process;
- ② Evaluate f at x_1, \dots, x_n $y_i = f(x_i)$;
- ③ Compute posterior given the observed values of $p(f | x_{1:n}, y_{1:n}) \propto p(f) \prod_{i=1}^n \delta(y_i - f(x_i))$;
- ④ Estimate

$$\int_a^b f(x)dx \approx \int_a^b f_n(x)dx, f_n(t) = \mathbb{E}[f(t) | x_{1:n}, y_{1:n}]$$

Paper Motivation: Marginal \rightarrow Conditional Coverage

- Marginal coverage:

$$\mathbb{P}\left(Y_{n+1} \in \hat{C}_n(X_{n+1}) \mid (X_i, Y_i), i \in D_1\right) \in \left[1 - \alpha, 1 - \alpha + \frac{1}{n_2 + 1}\right)$$

The probability or expectation \mathbb{P}, \mathbb{E} is over both calibration and test data $i = 1, \dots, n_2 + 1 \Rightarrow$ coverage guaranteed **in aggregate** over multiple calibration sets (model trained, test data fixed), but the guarantee might not hold for each set in particular

- Conditional coverage on each calibration set?

$$\mathbb{P}\left(Y_{n+1} \in \hat{C}_n(x) \mid (X_i, Y_i), i \in D_1 \cup D_2, X_{n+1} = x\right) \geq 1 - \alpha$$

Quantile as Random Variable

- By change of variable $u = F(x)$, the expectation of a random variable X is the integral of its quantile function over its domain

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} xf(x)dx = \int_0^1 Q(u)du$$

- Consider the conditional CDF of loss functions given θ

$$F(\ell | \theta) \triangleq \mathbb{P}\{\ell(z_{\text{new}}, \lambda) \leq \ell | \theta\}$$

- The corresponding quantile function is

$$K_{\theta}(t) \equiv F_{\theta}^{-1}(t) = \inf\{\ell : F_{\theta}(\ell) \geq t\}$$

- Loss ℓ as a random variable, then the expected loss is

$$\mathbb{E}[\ell(z, \lambda)] \triangleq J[K] = \int_0^1 K(t)dt$$

as a functional of the latent quantile function $K(t)$

Reformulate CP as BQ

- Idea: Instead of working directly on $p(\theta | z_{1:n})$, reparametrize the model using **Bayesian Quadrature for quantile function**
- Recall the expected loss (risk) over future data is

$$L(\theta, \lambda) = \int \ell(z_{\text{new}}, \lambda) f(z_{\text{new}} | \theta) dz_{\text{new}} = \mathbb{E}_{z|\theta} [\ell(z_{\text{new}}, \lambda)] \triangleq J[K]$$

- The posterior risk given the observed individual losses $\ell_i = \ell(z_i, \lambda)$ is

$$\begin{aligned} r(\lambda | z_{1:n}) &= \mathbb{E}[L | z_{1:n}] = \int L(\theta, \lambda) p(\theta | z_{1:n}) d\theta \\ &= \mathbb{E}[L | \ell_{1:n}] = \int J[K] p(K | \ell_{1:n}) dK \end{aligned}$$

- The posterior over quantile functions is

$$p(K | \ell_{1:n}) = \int p(K | t_{1:n}, \ell_{1:n}) p(t_{1:n} | \ell_{1:n}) dt_{1:n}$$

$$p(K | t_{1:n}, \ell_{1:n}) \propto \pi(K) \prod_{i=1}^n \delta(\ell_i - K(t_i))$$

Remove Prior Specification by an Upper Bound

- But to be assumption-free, we need to **avoid specifying prior $p(K)$!**
- An upper bound on the posterior risk by the right rectangular rule

Theorem 4.1

Let $t_{(0)} = 0$, $t_{(n+1)} = 1$, and $\ell_{(n+1)} = B$. Then

$$\sup_{\pi} E(L \mid t_{1:n}, \ell_{1:n}) \leq \sum_{i=1}^{n+1} u_i \ell_{(i)}$$

where $u_i = t_{(i)} - t_{(i-1)}$.

- LHS = worst posterior risk
- RHS = piecewise-constant numerical quadrature approximation as a weighted sum of the observed losses by the spacing between consecutive quantiles

Illustration

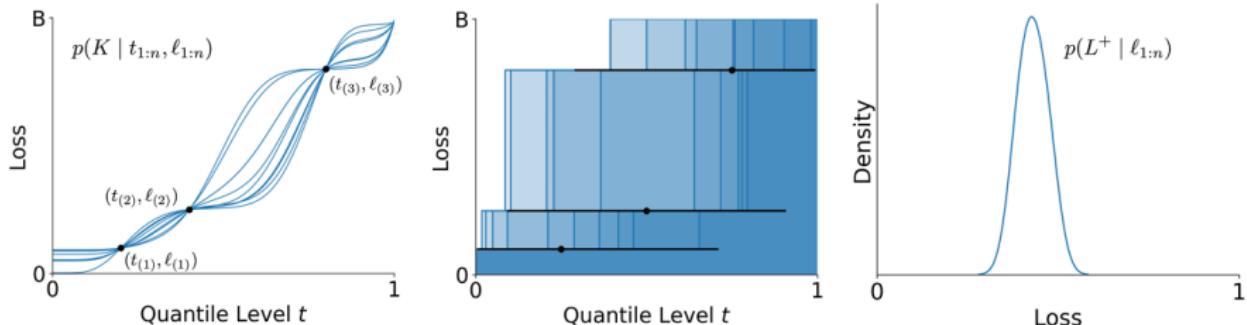


Figure: Left: Bayesian quadrature places a prior over the quantile function of the loss distribution. In practice, **quantile levels are not observed**.

Middle: quantile spacings with a right rectangular integration rule to construct an upper bound on the posterior distribution of the expected loss. **Randomly sampled spacings** and corresponding quantile functions are shown in blue along with a 95% credible interval for each quantile level in black.

Right: The posterior distribution for a random variable L^+ that upper bounds the expected loss is constructed by integrating over the unknown quantile levels $t_{1:n}$.

Illustration of Theorem 4.1

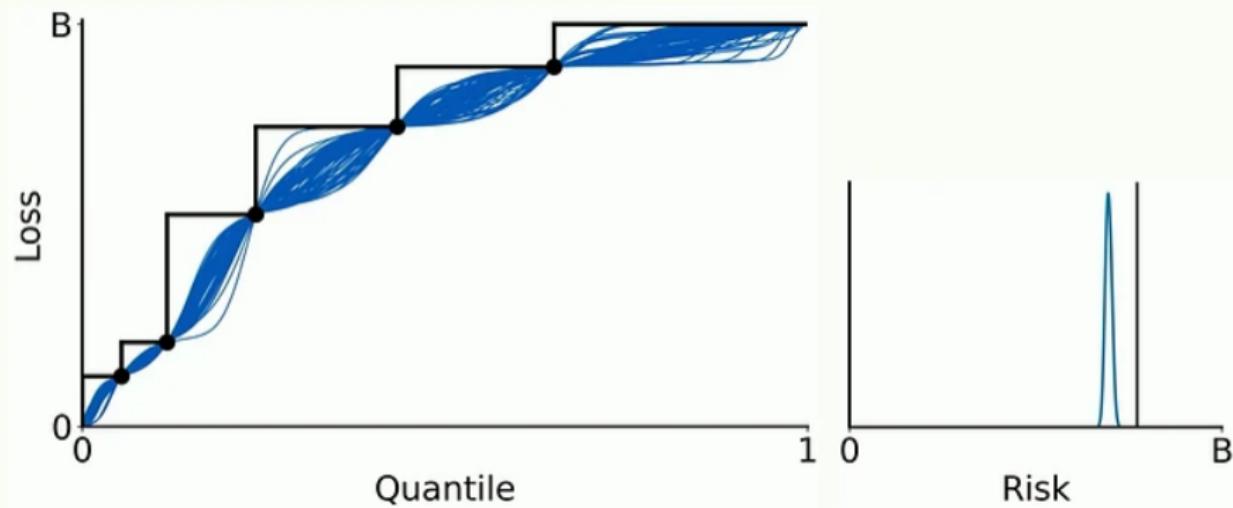


Figure: Regardless of priors, the stepwise function gives an upper bound on the risk (in black)

Dirichlet Quantile Spacings & Bound Maximum Risk

- Note that we only observe the loss values $\ell_{1:n}$, not the quantiles $t_{1:n}$
- It turns out the distribution of quantile spacings follows a Uniform Dirichlet $Dir(1, \dots, 1)$, independent of the loss distribution.

Theorem 4.3

Define $\ell_{(i)}$ to be the order statistics of ℓ_1, \dots, ℓ_n for $i = 1, \dots, n$ and $\ell_{(n+1)} \triangleq B$. Let L^+ be the random variable defined as follows:

$$U_1, \dots, U_{n+1} \sim Dir(1, \dots, 1), L^+ = \sum_{i=1}^{n+1} U_i \ell_{(i)}$$

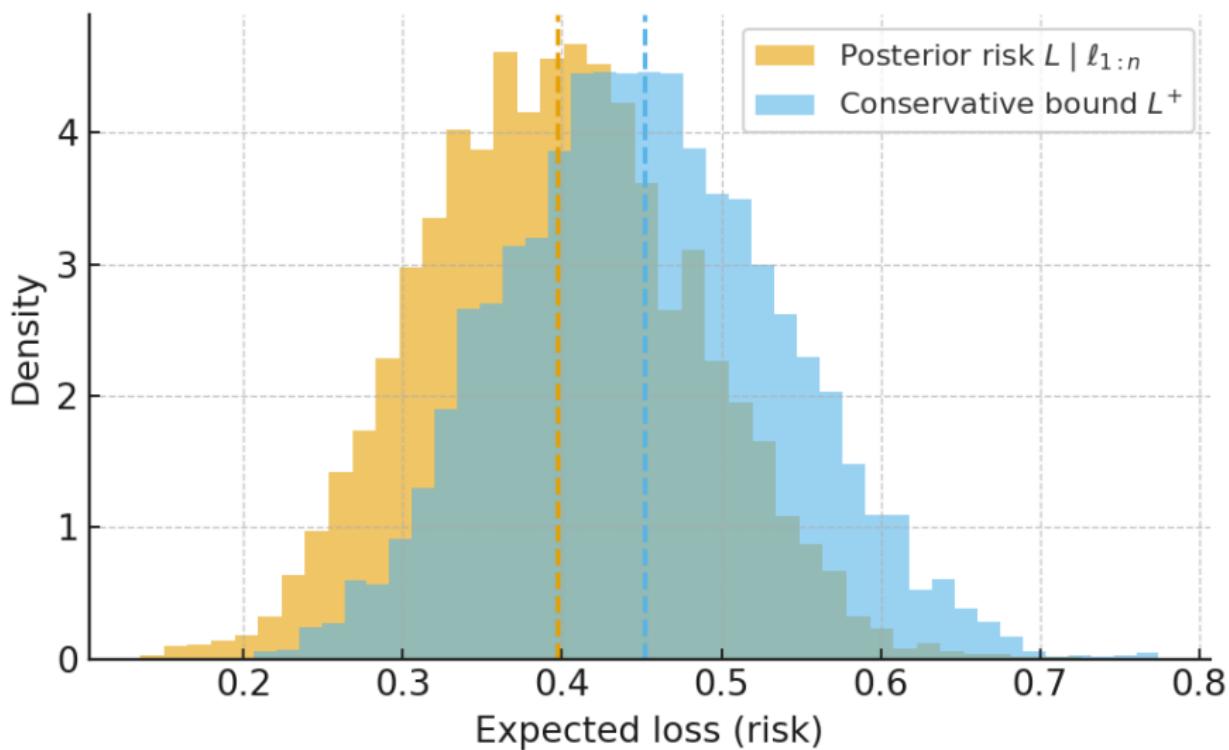
Then for any $b \in (-\infty, B]$,

$$\inf_{\pi} \Pr(L \leq b | \ell_{1:n}) \geq \Pr(L^+ \leq b)$$

L^+ stochastically dominates posterior risk (density of L^+ more at the right)

Illustration of Theorem 4.3

Illustration: Posterior risk vs conservative bound L^+



Recover Conformal Methods by Posterior Mean

Then we can directly construct upper confidence bounds as follows:

Corollary 4.4

For any desired coverage level $1 - \alpha \in (0, 1)$, define

$$b_{1-\alpha}^* = \inf_b \{b : \Pr(L^+ \leq b | \ell_{1:n}) \geq 1 - \alpha\}.$$

Then $\inf_{\pi} \Pr(L \leq b | \ell_{1:n}) \geq 1 - \alpha$ for any $b \geq b_{1-\alpha}^*$.

The expected value of L^+ recovers conformal methods:

- Split CP:

$$E(L^+) = \frac{1}{n+1} \left(n+1 - \sum_{i=1}^n \mathbb{1}\{s_i \leq s_{(k)}\} \right) = 1 - \frac{k}{n+1}$$

- Conformal Risk Control:

$$E(L^+) = \sum_{i=1}^{n+1} E(U_i) \ell_{(i)} = \frac{1}{n+1} \left(\sum_{i=1}^n \ell_i + B \right)$$