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Conformal Prediction 101

Goal: Distribution-free uncertainty quantification in future
observations of ANY black-box prediction models/algorithms

How? Construct prediction sets that contain the ground-truth output
with high probability
i.e. finite-sample coverage guarantees in terms of coverage level 1− α

How? Build a wrapper on top of black-box algos by converting
prediction values into prediction sets.

Setup: Assume having access to a calibration set (Xi ,Yi ), i = 1, . . . , n
the model hasn’t seen, then given a new test point (Xn+1,Yn+1),
construct a prediction set Ĉn such that

P
(
Yn+1 ∈ Ĉn (Xn+1)

)
≥ 1− α ⇔ P

(
Yn+1 /∈ Ĉn (Xn+1)

)
≤ α
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Key idea: use rank to form adjusted quantiles

Denote conformity score s(x , y) as a (dis)agreement metric, e.g.,
absolute residual in regression, then the prediction set is formed by

Ĉn (Xn+1) = {y : s (Xn+1, y) ≤ q̂n}

q̂n is the ⌈(1−α)(n+1)⌉
n quantile of s(X1,Y1), . . . , s(Xn,Yn), that is,

⌈(1− α)(n + 1)⌉ smallest of s(X1,Y1), . . . , s(Xn,Yn))

Key assumption: exchangeability of scores s(Xi ,Yi ), i = 1, . . . , n + 1

Then, the rank of sn+1 is uniformly distributed over {1, . . . , n + 1}

s(1) s(2) s(3) s(4)
· · ·

s⌈(1−α)(n+1)⌉
· · ·

s(n+1)

≥ 1− α fraction

=⇒ P (s(Xn+1,Yn+1) ≤ q̂n) ∈
[
1− α, 1− α+ 1

n+1

)
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Regression Example

A Taste of Conformal Prediction by Emmanuel Candès starting at 10:12
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https://www.youtube.com/watch?v=YzTzN3RyFrk&t=1944s


Split & Full Conformal Prediction

Statistical & Computational tradeoff: how to exploit accessible data
{Xi ,Yi}ni=1 at hand?

Split CP:

split data into training set D1 & calibration set D2

D1 ∪ D2 = {1, . . . , n},D1 ∩ D2 = ∅
fit prediction model f̂D1 using D1, compute scores using D2

train model once (fast), but lose statistical efficiency due to the sample
splitting (only use half the data points to fit the model)

Full CP:

use all data points for training and calibration via leave-one-out fitting
fit model f̂−i using all data except (Xi ,Yi ), and compute score si for
each i = 1, . . . , n
train model n times (expensive), but get exact coverage with tighter
prediction sets

Exchangeability needed for both! (Counterexamples: time series,
covariate shift, heteroscedastic data ⇒ modified CP methods)
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Concrete Algorithm (Full CP, split as a special case)

1 Propose a test query value y

2 Pick any conformity score s(x , y) (residual score s(x , y) = |y − µ̂(x)|)
3 Fit model to all n + 1 data via a symmetric algorithm to

(X1,Y1) , (X2,Y2) , . . . , (Xn+1, y) ∼ S (Xi ,Yi )

4 Compute quantile q̂n ≜ Q ⌈(1−α)(n+1)⌉
n

(S (Xi ,Yi ))

note: Q1−α {si : i ∈ Ical } for split CP

5 If S (Xn+1, y) ≤ q̂n, include y in prediction set Ĉn
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Review of Statistical Decision Theory

Let z = (z1, . . . , zn) be a set of calibration data {(xi , yi )}ni=1. Denote θ as
the likelihood parameter and λ(z) as a control parameter chosen based on
z . Loss L(θ, λ(z)) is incurred by selecting λ when the true nature is θ.

risk

R(θ, λ) =

∫
L(θ, λ(z))f (z | θ)dz

maximum risk
R̄(λ) = sup

θ
R(θ, λ)

average risk

r(π, λ) =

∫
R(θ, λ)π(θ)dθ

posterior risk

r(λ | z) = E (Lλ | z) =
∫

L(θ, λ(z))π(θ | z)dθ

Find λ to control r̄(λ) ≜ supπ r(π, λ) = supθ R(θ, λ) = R̄(λ) ≤ α
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Conformal Risk Control (Angelopoulos et al, 2024)

Generalize to per-sample loss functions ℓ(z , λ) ≡ ℓ (Cλ (x) , y) that are
assumed to be monotonic of a single parameter λ. The risk is

R(θ, λ) =

∫
ℓ (znew, λ) f (znew | θ) dznew = Ef (z|θ) [ℓ (Cλ (Xn+1) ,Yn+1)]

Goal: control expected loss (risk) under minimal assumptions
(exchangeability), e.g., false positive rate, F1 score, conditional error

E [ℓ (Cλcrc (Xn+1) ,Yn+1)] ≤ α

λcrc ≜ inf

{
λ :

1

n + 1

n∑
i=1

ℓ(zi , λ) +
B

n + 1
≤ α

}
where B is assumed to be the maximum possible loss value.
ℓ(z , λ) measures how well the conformal set C(xi ) covers true label yi ,
1

n+1

∑n
i=1 ℓ(zi , λ) empirical risk, B

n+1 correction term by exchangeability.
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Bayesian Quadrature

A class of probabilistic numerical methods viewing numerical integration of∫ b
a f (x)dx as Bayesian inference in the following steps:

1 Place a prior p(f ) on functions ,e.g., Gaussian process;

2 Evaluate f at x1, . . . , xn yi = f (xi );

3 Compute posterior given the observed values of
p (f | x1:n, y1:n) ∝ p(f )

∏n
i=1 δ (yi − f (xi ));

4 Estimate∫ b

a
f (x)dx ≈

∫ b

a
fn(x)dx , fn(t) = E [f (t) | x1:n, y1:n]
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Paper Motivation: Marginal → Conditional Coverage

Marginal coverage:

P
(
Yn+1 ∈ Ĉn (Xn+1) | (Xi ,Yi ) , i ∈ D1

)
∈
[
1− α, 1− α+ 1

n2+1

)
The probability or expectation P,E is over both calibration and test
data i = 1, . . . , n2 + 1 ⇒ coverage guaranteed in aggregate over
multiple calibration sets (model trained, test data fixed), but the
guarantee might not hold for each set in particular
Conditional coverage on each calibration set?

P
(
Yn+1 ∈ Ĉn(x) | (Xi ,Yi ) , i ∈ D1 ∪ D2,Xn+1 = x

)
≥ 1− α

11 / 19



Quantile as Random Variable

By change of variable u = F (x), the expectation of a random variable
X is the integral of its quantile function over its domain

E [X ] =

∫ ∞

−∞
xf (x)dx =

∫ 1

0
Q(u)du

Consider the conditional CDF of loss functions given θ

F (ℓ | θ) ≜ P {ℓ (znew , λ) ≤ ℓ | θ}

The corresponding quantile function is

Kθ(t) ≡ F−1
θ (t) = inf{ℓ : Fθ(ℓ) ≥ t}

Loss ℓ as a random variable, then the expected loss is

E[ℓ(z , λ)] ≜ J[K ] =

∫ 1

0
K (t)dt

as a functional of the latent quantile function K (t)
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Reformulate CP as BQ

Idea: Instead of working directly on p(θ | z1:n), reparametrize the
model using Bayesian Quadrature for quantile function
Recall the expected loss (risk) over future data is

L(θ, λ) =

∫
ℓ (znew, λ) f (znew | θ) dznew = Ez|θ [ℓ(znew, λ)] ≜ J[K ]

The posterior risk given the observed individual losses ℓi = ℓ(zi , λ) is

r(λ | z1:n) = E[L | z1:n] =
∫

L(θ, λ)p (θ | z1:n) dθ

= E [L | ℓ1:n] =
∫

J[K ]p(K | ℓ1:n)dK

The posterior over quantile functions is

p (K | ℓ1:n) =
∫

p (K | t1:n, ℓ1:n) p (t1:n | ℓ1:n) dt1:n

p (K | t1:n, ℓ1:n) ∝ π(K )
n∏

i=1

δ (ℓi − K (ti ))
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Remove Prior Specification by an Upper Bound

But to be assumption-free, we need to avoid specifying prior p(K )!

An upper bound on the posterior risk by the right rectangular rule

Theorem 4.1

Let t(0) = 0, t(n+1) = 1, and ℓ(n+1) = B. Then

sup
π

E (L | t1:n, ℓ1:n) ≤
n+1∑
i=1

uiℓ(i)

where ui = t(i) − t(i−1).

LHS = worst posterior risk

RHS = piecewise-constant numerical quadrature approximation as a
weighted sum of the observed losses by the spacing between
consecutive quantiles
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Illustration

Figure: Left: Bayesian quadrature places a prior over the quantile function of the
loss distribution. In practice, quantile levels are not observed.
Middle: quantile spacings with a right rectangular integration rule to construct an
upper bound on the posterior distribution of the expected loss. Randomly
sampled spacings and corresponding quantile functions are shown in blue along
with a 95% credible interval for each quantile level in black.
Right: The posterior distribution for a random variable L+ that upper bounds the
expected loss is constructed by integrating over the unknown quantile levels t1:n.
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Illustration of Theorem 4.1

Figure: Regardless of priors, the stepwise function gives an upper bound on the
risk (in black)

16 / 19



Dirichlet Quantile Spacings & Bound Maximum Risk

Note that we only observe the loss values ℓ1:n, not the quantiles t1:n

It turns out the distribution of quantile spacings follows a Uniform
Dirichlet Dir(1, . . . , 1), independent of the loss distribution.

Theorem 4.3

Define ℓ(i) to be the order statistics of ℓ1, . . . , ℓn for i = 1, . . . , n and

ℓ(n+1) ≜ B. Let L+ be the random variable defined as follows:

U1, . . . ,Un+1 ∼ Dir(1, . . . , 1), L+ =
n+1∑
i=1

Uiℓ(i)

Then for any b ∈ (−∞,B],

inf
π
Pr (L ≤ b | ℓ1:n) ≥ Pr

(
L+ ≤ b

)
L+ stochastically dominates posterior risk (density of L+ more at the right)
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Illustration of Theorem 4.3
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Recover Conformal Methods by Posterior Mean

Then we can directly construct upper confidence bounds as follows:

Corollary 4.4

For any desired coverage level 1− α ∈ (0, 1), define

b∗1−α = inf
b

{
b : Pr

(
L+ ≤ b | ℓ1:n

)
≥ 1− α

}
.

Then infπ Pr (L ≤ b | ℓ1:n) ≥ 1− α for any b ≥ b∗1−α.

The expected value of L+ recovers conformal methods:

Split CP:

E
(
L+
)
=

1

n + 1

(
n + 1−

n∑
i=1

⊮
{
si ≤ s(k)

})
= 1− k

n + 1

Conformal Risk Control:

E
(
L+
)
=

n+1∑
i=1

E (Ui ) ℓ(i) =
1

n + 1

(
n∑

i=1

ℓi + B

)
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