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Structure in Q
VAE consensus: use NNs for both encoder and decoder

Simple case: qϕ(z | x) = N
(

z | µϕ(x),diag
(
σ2
ϕ(x)

))
whose distribution parameters are outputs of the encoding MLP

More flexible specification of approximate posterior distributions?
• Structured mean-field
• Mixture model

• require evaluation of log-likelihood and its gradients for each
mixture component per parameter update = expensive

• Normalizing Flows
• integrates with VAE: Encoder outputs not just the parameters of

the base distribution q0(z), but also the parameters of the NF (later)

Great NF review paper as reference: Papamakarios et al. (2019) &
Kobyzev et al. (2020)
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Core - Change of Variables

Idea: A mechanism to construct new families of distributions by
choosing an initial density and then chaining together (in)finite
number of parameterized, invertible, differentiable transformations:

z0 ∼ q (z0 | x) , zi = fi (zi−1, x) ∀i = 1 . . .D (1)

Since invertible and differentiable transformations are composable:

log q (zD | x) = log q (z0 | x)−
D∑

i=1

log det

∣∣∣∣ dzi

dzi−1

∣∣∣∣ (2)

Note that
∣∣∣ dzi

dzi−1

∣∣∣ quantifies the relative change of volume (how much
multiplication by the matrix expands or contracts space)
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Nice conditions to have
in order to be practically useful

• transformation f must be invertible;
• why crucial? Related to sampling & density estimation (come back

later)
• both f and g = f−1 must be differentiable;

• diffeomorphism!
• easy to compute density

• easy to compute the determinant of Jacobian
• easy to sample from

• possible to have both?
• typically only achieves one of them
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Flow & Normalizing Flow
Where are the names coming from?

• Flow: Trajectory that a collection of samples from the base
distribution q0(z) being gradually transformed by the sequence
of transformations f1, ..., fK

• Sampling operation x = zK = f (z0), f = fK ◦ · · · ◦ f1

• Normalizing Flow: The inverse flow through f−1
K , f−1

K−1, ..., f
−1
1

takes a collection of samples from qK(z) and ’normalizes’ them
into a collection of samples from a prescribed base q0(z) e.g.
Multivariate Normal

• Density evaluation operation px(x) = pz
(
f−1(x)

) ∣∣∣det Jf−1(x)
∣∣∣

(board)
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Illustration
and what’s not told in figure

Figure: Generative direction - f pushes forward the base density p0(z0) (noise)

The density of a sample can be evaluated by transforming it back to
the base distribution and then computing the product of
i) the density of the inverse-transformed sample under the base;
ii) the associated change in volume induced by the sequence of
inverse transformations.
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Interplay
NF

⋂
VI

What VI looks like with NF? How NF interacts with VI for modeling
and inference?

This point seems like a remaining question on which we haven’t
meditated enough.

I found Papamakarios et al. (2019) answered this question nicely, so I
stole their ideas (and notations, sorry!).

Spoil alert: Reverse K-L divergence
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⋂

VI
with new notations...

Similarly to fitting any probabilistic model, fitting a flow-based
model px(x;θ) to a target distribution p∗

x(x) can be done by
minimizing some divergence or discrepancy between them.

This minimization is performed with respect to the model’s
parameters θ = {ϕ, ψ}, where ϕ are the parameters of invertible
transformation T and ψ are the parameters of base distribution pu(u).
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think about VAE

In a standard Variational Autoencoder (VAE), the encoder neural
network takes observed data x as input and outputs the parameters
of a base distribution pu(u), commonly a Gaussian distribution. These
parameters often include the mean and variance of the Gaussian.

After incorporating Normalizing Flows (NF) into a VAE, the encoder
not only has to output the parameters of the base distribution pu(u),
but also the parameters that define the transformations in the NF, i.e.
θ = {ϕ, ψ}.
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Forward K-L Divergence
Fancy name, but essentially 2 sides of K-L by asymmetry

L(θ) = DKL [p∗x(x)∥px(x;θ)]
= −Ep∗x (x) [log px(x;θ)] + const.

= −Ep∗x (x)
[
log pu

(
T−1(x;ϕ);ψ

)
+ log |det JT−1(x;ϕ)|

]
+ const.

≈ − 1
N

N∑
n=1

log pu
(
T−1 (xn;ϕ) ;ψ

)
+ log |det JT−1 (xn;ϕ)|+ const.

Useful when: have samples from the target distribution (or the ability
to generate them), but we cannot necessarily evaluate the target
density p∗x(x)

∇ϕL(θ) ≈ − 1
N

N∑
n=1

∇ϕ log pu
(
T−1 (xn;ϕ) ;ψ

)
+∇ϕ log |det JT−1 (xn;ϕ)|

∇ψL(θ) ≈ − 1
N

N∑
n=1

∇ψ log pu
(
T−1 (xn;ϕ) ;ψ

)
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Reverse K-L
VI: reverse KL is all you need

L(θ) = DKL [px(x;θ)∥p∗
x(x)]

= Epx(x;θ) [log px(x;θ)− log p∗x(x)]

= Epu(u;ψ) [log pu(u;ψ)− log |det JT(u;ϕ)| − log p∗x(T(u;ϕ))]

= Epu(u;ψ) [log pu(u;ψ)− log |det JT(u;ϕ)| − log p̃x(T(u;ϕ))] + const.
Useful when: have the ability to evaluate the target density
p∗x(x) =

p̃x(x)
C up to a normalizing constant, but not necessarily sample

from it.

∇ϕL(θ) ≈ − 1
N

N∑
n=1

∇ϕ log |det JT (un;ϕ)|+∇ϕ log p̃x (T (un;ϕ))

Gradient estimate ∇ψ by reparameterizing u as
u = T′ (u′;ψ) where u′ ∼ pu′ (u′), like we did in VAE.
(Board)
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Inverse Autoregressive Flow
one example of flow construction

Autoregressive flow:

z′
i = τ (zi;hi) where hi = ci (z<i)

zi = τ−1 (z′i ;hi) where hi = ci (z<i) (IAF).
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• Autoregressive Flow
• Easy: Each z′i can be computed in parallel (forward)
• Hard: To compute zi, all z<i need be have been computed (inverse)

• Inverse Autoregressive Flow
• Easy: hard part of AF
• Hard: easy part of AF

Puzzling inverse(to me, it’s like inverse of inverse)!
(board to match notation in IAF paper)
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Cheatcode
complexity in sampling and density evaluation

See Jupyter Notebook.
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The End
Questions? Comments?


	VI, NF & how they interplay
	Motivation
	NF  VI

	Inverse Auregressive Flow
	Formulation
	Complexity in Sampling & Density Evaluation
	Cheatcode: Implementation in TFP


