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Structure in Q

VAE consensus: use NN for both encoder and decoder

Simple case: g4(z | x) = N (z | 1y (x), diag (O’i(X)))
whose distribution parameters are outputs of the encoding MLP

More flexible specification of approximate posterior distributions?
¢ Structured mean-field
® Mixture model

® require evaluation of log-likelihood and its gradients for each
mixture component per parameter update = expensive

* Normalizing Flows

¢ integrates with VAE: Encoder outputs not just the parameters of
the base distribution go(z), but also the parameters of the NF (later)

Great NF review paper as reference: Papamakarios et al. (2019) &
Kobyzev et al. (2020)
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Core - Change of Variables

Idea: A mechanism to construct new families of distributions by
choosing an initial density and then chaining together (in)finite
number of parameterized, invertible, differentiable transformations:

Z()Nq(Z()|X)7 ZiZfi(Zi_l,X) Vi=1...D (1)

Since invertible and differentiable transformations are composable:

dZ,‘

D
logg (zp | x) =logq(zo | x) — Zlog det (2)

i=1

dz;_q

Note that ‘ difil ‘ quantifies the relative change of volume (how much

multiplication by the matrix expands or contracts space)
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Nice conditions to have

in order to be practically useful

¢ transformation f must be invertible;

® why crucial? Related to sampling & density estimation (come back
later)

both f and ¢ = f~! must be differentiable;

e diffeomorphism!

® easy to compute density
® easy to compute the determinant of Jacobian
® easy to sample from

® possible to have both?
¢ typically only achieves one of them
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Flow & Normalizing Flow

Where are the names coming from?

® Flow: Trajectory that a collection of samples from the base
distribution qo(z) being gradually transformed by the sequence
of transformations fi, ..., fx
® Sampling operation x = zx = f(20), f=fko---ofi
¢ Normalizing Flow: The inverse flow through f;~ 1 fK_jl, e fl_1

takes a collection of samples from gg(z) and ‘normalizes” them
into a collection of samples from a prescribed base go(z) e.g.
Multivariate Normal

* Density evaluation operation px(x) = p, (f ' (x)) ‘det J-1 (x)‘
(board)
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[Mustration

and what’s not told in figure

2o ~ po(2o) 2; ~ pi(2i) 2k ~ Pi(zK)

Figure: Generative direction - f pushes forward the base density po(zo) (noise)

The density of a sample can be evaluated by transforming it back to
the base distribution and then computing the product of

i) the density of the inverse-transformed sample under the base;

ii) the associated change in volume induced by the sequence of
inverse transformations.
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Interplay

NF ) VI

What VI looks like with NF? How NF interacts with VI for modeling
and inference?

This point seems like a remaining question on which we haven’t
meditated enough.

I found Papamakarios et al. (2019) answered this question nicely, so I
stole their ideas (and notations, sorry!).

Spoil alert: Reverse K-L divergence
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NF () VI

with new notations...

Similarly to fitting any probabilistic model, fitting a flow-based
model px(x; 0) to a target distribution p}(x) can be done by
minimizing some divergence or discrepancy between them.

This minimization is performed with respect to the model’s
parameters 0 = {¢, 1)}, where ¢ are the parameters of invertible
transformation T and ¢ are the parameters of base distribution p, (u).
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think about VAE

In a standard Variational Autoencoder (VAE), the encoder neural
network takes observed data x as input and outputs the parameters
of a base distribution p, (1), commonly a Gaussian distribution. These
parameters often include the mean and variance of the Gaussian.

After incorporating Normalizing Flows (NF) into a VAE, the encoder
not only has to output the parameters of the base distribution p, (1),
but also the parameters that define the transformations in the NF i.e.

0 ={¢,¢}.
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Forward K-L Divergence

Fancy name, but essentially 2 sides of K-L by asymmetry

L(0) = Dk [pi(x)|Ipx(x; 0)]
= —Ep: (x [log px(x; 0)] + const.

= —E,:(x [logpu (T (x; ¢);¢) + log |det Jr-1(x; ¢)|] + const.

N
1 _
= N E log pu (T 1 (Xn; &) ,1/1) + log|det J7-1 (x,; )| + const.

=1
Useful when: have samples from the target distribution (or the ability
to generate them), but we cannot necessarily evaluate the target

density pi(x)

VoL(0) = —— Z Vs logpy ( (xn7 ?) ;1/}) + Vy log|det Jr-1 (Xu; @)
n 1

1
VyL(O) & =1 > Vylogpu (T (xi 6)0)

Yichen Ji Normalizing Flows



VI, NF & how they interplay Motivation
NF (N VI

Reverse K-L

VI: reverse KL is all you need

L£(6) = Dk [px(x; 0)[Ipx (x)]

= Ep (x0) [log px(x; ) — log px (x)]

= Epyu) log pu(w;9) —log |det J1(u; 6)| — log pi(T(u; 9))]

= Ep, (u) log pu(u; ¢) —log|det Jr(u; ¢)| — log px(T(w; )] + const.
Useful when: have the ability to evaluate the target density

pi(x) = B2 X(x) up to a normalizing constant, but not necessarily sample
from it.

N
1 ~
VoL(0) ~ — >V log|det Jr (wy; ¢)| + Vg log px (T (un; ¢))
n=1
Gradient estimate V, by reparameterizing u as
u="T (u;¢) where u ~ py (u),like we did in VAE.
(Board)
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one example of flow construction

Autoregressive flow:

zj =7 (zi;h;)  where  h; = ci(z<i)
zi =71 (z;h) where h;=c;(z-;) (IAF).

i/ ! ’ 4 ! r ’ ’ ’ !
‘ 21 ‘ 22‘ ‘ZH % |ZD| | 1 ‘ Zz| ‘z!—l 2 |ZD
h =
[T I T N ) R Y Y B A )

(a) Forward (b) Inverse
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& Density Evaluation

Inverse Auregressive Flow

Cheatcode: Implementation in TFP

® Autoregressive Flow
® Easy: Each z{ can be computed in parallel (forward)
¢ Hard: To compute z;, all z; need be have been computed (inverse)
® Inverse Autoregressive Flow
® Easy: hard part of AF
® Hard: easy part of AF
Puzzling inverse(to me, it’s like inverse of inverse)!
(board to match notation in IAF paper)
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Formulation

Inverse Auregressive Flow

Cheatcode

Complexity in Sampling & Density Evaluatio
Cheatcode: Implementation in TFP

complexity in sampling and density evaluation

See Jupyter Notebook.

DIDSOMEBODY.SAY'\\
==

A

JUPYTER NOTEBOOKS

imgflip.com
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The End

Questions? Comments?
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