Realized Volatility Forecasting with ML
Thesis Advisor: Prof. Dacheng Xiu

Yichen Ji

Realized Volatility Forecasting with ML

Yichen Ji

Department of Statistics
University of Chicago

May 1st, 2024
o[y
[ Tl entia|latur [ g

Q4 ;@

Department of Statistics University of Chi



@ Motivation

@ Literature Review
© Methodology

@ Empirical Findings
@ Conclusion

@ References

Yichen Ji Department of Statistics University of Chicago

Realized Volatility Forecasting with ML



Motivati
@00

@ Motivation

Yichen Ji Department of Statistics University of Chicago

Realized Volatility Forecasting with



Motivation
(o] le}

RV: a volatility measure using high-frequency data

M
RV erﬁ,-
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® e.g. clustering, (local) mean-reverting, asymmetry, etc.
® Machine learning: What potential? [KX23]

® Presence of large conditioning panel information sets
® Ambiguous functional forms
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Two Questions

Q: What information do market participants have and how do
they use it?

® A: We don't know, but machine learning models may uncover
some complex patterns given adequate panel data and
functional complexity. [KMZ24]

® Q: Which of the many economic models available in the
literature should we impose?

® A: Apply and compare the performance of each of its methods
in familiar empirical problems. [GKX20]

® Objective: Compare the out-of-sample predictive
performance of machine learning models against structural
time-series econometric models
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Literature Review

"A good volatility model must be able to forecast volatility." [EP07]

® OLS-based models: HAR [Cor09], MIDAS [GSCV06], SHAR
[PS15], HARQ [BPQ16], HEXP [BHHP18]

e Attempts using ML models: LASSO [AK16], random forest
[LD18], feed-forward neural networks (FFNN) and recurrent

neural networks (RNN) [Buc20], convolutional neural
networks (CNN) [RBH22]

e Comparative analysis: [RP20], [LT22], [CSV23], [ZZCQ24]

® Robust realized measures:
[BNS06, ZMASO05, Zha06, BNHLS08, PV09, ADS12, DX21],

¢ ML N (Economics U Finance):
[A118, GKX20, GKX22, KMZ24, CPZ24]
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Model Overview

Econometrics Machine Learning
HAR LASSO
MIDAS Principal Component Regression (PCR)
SHAR Random Forest (RF)
HARQ Gradient Boosting Regression Tree (GBRT)
HEXP

Feed-forward Neural Networks (FFNN)

Yichen Ji
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Quadratic Variation Theory

Assume the log price p; within the active part of a trading day t
follows a continuous semimartingale of the form:

t t
Pt :/ Msd5+/ osdWs
t—1 t—1

The quadratic variation (QV) of this log-price process, after some
derivation, is:

t
QV: = [p, plt :/ aﬁds
t—1

The true unobservable volatility construct that integrates the
instantaneous volatility over time is called integrated volatility (1V):

t
/mz/ o2ds
t—1

QV: = IV; (without jumps)! Heads-up: Such nice coincidence
doesn’t happen in general e.g. jump-diffusion process.)
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Consistency & Asymptotic Theory [BNS02]

Since we can only observe intraday price observations in discrete
time...

M
RVe=> r2; &IV
i=1
Moreover, the semimartingale theory provides CLT:

th - /\/1_L d
VM <2th > % N(0,1)

where 1Q; = ftil o%ds denotes integrated quarticity, which is
independent of the limiting Gaussian distribution and can be
consistently estimated by the realized quarticity (RQ) statistic:

M M
RQt:3;rz},iﬁ>th
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HAR [Cor09]

RV: = Bo + BaRVE 1 + BuRVY 1 + BmRV™ 1 + BaRV | + e

where RV/ | = %Zle RV:_i, 1 ={1,5,22,63} is the simple
average of daily RVs over different lag horizons (daily, weekly,
monthly, quarterly, respectively), and {e;}+ is a zero mean
innovation process.

® Simple, parsimonious, easy to implement

® Serve as the benchmark model

Yichen Ji

Department of Statistics University of Chicago
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MIDAS [GSCV06]

RVt == ﬁo + ﬁlMIDASt_l + €t,

L
1
MIDAS: = ——— > ai11RV;

i=19i =0
-\ 611 N

a= (1 A R C ) R
L L M (61)T(62)

® Smoothly weighted moving average of lagged daily RVs

® Parametrize the coefficients/weights in a beta polynomial form
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SHAR [PS15]

RV: = Bo + B RS, + 87 RSS
+ BWRV,_L"Zl + BmRVtrzl =+ 6qRVtCL1 + €t,

M M
RS, = Z rtz,,-]l{rt?,- >0},RS; = Z rt27,-]I{rt7; < 0}.
i=1 i=1

® |everage realized semivariance (RS) estimator by [BNKS08]

e [PS15] found that the negative RS has more predictive power
than its positive counterpart.
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HARQ [BPQ16]

th /Vt + Ne, M ~ N(O 2AIQt)

RV = Bo + (Ba + dar/ RRL_ RV 1 + (Bw + dw/RQY )RV,
+ (B + 6m[RQEDRVE + (B + 60/ RILDRVY + &4

® Exploit the heteroskedasticity in the measurement error 7;

e Compensate for uncertainty in RV measurements: low
variance in measurement errors offers a stronger predictive
signal
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HEXP [BHHP18]

RV; = Bo + B1ExpRV;_ + BsExpRV?_| + Bos ExpRVZ,
+ 6125 EXpRthf? + €4,

500 Y
CoM(X) €
ExpRV, = § RVi—it1
-2 —2A .. —500)\
— e +e + +e

Zoio e MMt e A
CoM(A) = Zt?io e At ] _ e A

® CoM Center of Mass, defined as the weighted average period
for the lags used; A decay rate

® Use a mixture of exponentially weighted moving averages
(EWMA) of lagged daily RVs as regressors
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Realized Volatility Forecasting with ML 18 / 49



Methodology
[ eJele]

© Methodology

Machine Learning Models

Yichen Ji Department of Statistics University of Chicago

Realized Volatility Forecasting with M



Methodology

Linear Models: LASSO & PCR

® | ASSO: sparsity, variable selection

® PCR: dimension reduction, but forms PCs before the
forecasting step
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Tree-based Models: RF & GBRT

® RF (bagging): averaged over forecasts of separate trees
trained on bootstrapped samples

® GBRT (boosting): each tree fitted on the residual errors of the
preceding tree, correcting what earlier predictors don't capture

Bagging Boosting

B—B—@ ><: &
DJ@’*’/

Parallel Sequential
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Data and Variables

Data:
® 2 universes: 1000 S&P 500 stocks and 10014 U.S. stocks

® Sample period: January 1996 - December 2022 (27 years)
® Data source:

® 1-min price observations from TAQ
® options implied volatility data from OptionMetrics
® overnight return and trading volume data from CRSP

® Collect call and put options with maturities ranging from
1,2, 3 months and absolute delta equal to 0.1,0.15,...,0.9

Features & Response Variable:
® 5-minute sampling frequency for intraday returns
® 122 features in total (15 realized + 102 implied + 4 price
volume + 1 intercept)
® Response Variable: next-day RV (in logs)

Yichen Ji
Realized Volatility Forecasting with ML

Department of Statistics University of Chicago
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Response Variable - S&P 500

\‘(pmv B! : 75/
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Figure 1: maximum, minimum, 99t" 95th 75th 5Qth 25th Bth ap71st
percentiles of daily RV in log-scale for stocks in the S&P 500 universe
from 1996 to 2022.
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Response Variable - U.S. Stocks
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Figure 2: maximum, minimum, 99t" 95th 75th 50th 25th Bth an1st
percentiles of daily RV in log-scale for stocks in the U.S. stock universe
from 1996 to 2022.
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Feature Correlation Heatmap
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Training Scheme & Evaluation Metrics

Training scheme:

® Rolling window: 5 training years + 1 validation year+ 1 test
year

® Panel/pooled fitting
Evaluation metrics:
——m\ 2
e (RVi—RV:")

2
————benchmark
i (Rv,-,fva,-,t )

* R%:1-—

® Mean squared error (MSE):
N2
N
N i T ot T (RVi:t - RVi:t)
® Quasi-likelihood (QLIKE):

1 N 1 exp(RVi,t) ) RV,
‘N Zi:l # Trest Zte'ﬁest [exp(ﬁ/i,t) B (RV’:t - RV’J—') - 1:|

Yichen Ji
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OO0S Performance - S&P 500 (* = 99.99%" percentile winsorized)

Model R2 MSE MSE* QLike QLike*
HAR 0.7052 0.3970 0.3962 0.4039 0.3737
MIDAS 0.6995 0.4047 0.4039 0.4018 0.3729
SHAR 0.7057 0.3963 0.3955 0.4029 0.3735
HARQ 0.7187 0.3787 0.3780 0.3912 0.3601
HEXP 0.7071 0.3944 0.3936 0.4015 0.3721
OLSRM 0.7201 0.3768 0.3761 0.3880 0.3583
OLSRM4 0.7202 0.3768 0.3761 0.3874 0.3578
OLSIV 0.6096 0.5257 0.5248 0.4471 0.4128
OLSALL 0.7276 0.3668 0.3660 0.3673 0.3366
LASSO 0.7276 0.3668 0.3661 0.3667 0.3368
PCR 0.7216 0.3748 0.3740 0.3734 0.3416
RF 0.7204 0.3765 0.3758 0.3681 0.3373
GBRT 0.7068 0.3948 0.3941 0.3854 0.3567
NN 0.7321 0.3607 0.3599 0.3576 0.3245

Table 1: OOS Forecasting Performance, S&P 500 Stocks
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OO0S Performance - U.S. stocks

Model R2 MSE MSE* QLike QLike*
HAR 0.7849 0.5708 0.5680 1.5628 0.4886
MIDAS 0.7815 0.5798 0.5771 1.4024 0.4914
SHAR 0.7850 0.5706 0.5678 1.6462 0.4883
HARQ 0.7884 0.5615 0.5587 1.6487 0.4864
HEXP 0.7863 0.5670 0.5643 1.4541 0.4827
OLSRM 0.7897 0.5580 0.5552 1.7167 0.4819
OLSRM4 0.7898 0.5578 0.5550 1.6645 0.4817
OLSIV 0.5109 1.2980 1.2951 1.4857 1.0282
OLSALL 0.7906 0.5557 0.5529 1.5204 0.4758
LASSO 0.7904 0.5563 0.5535 1.5025 0.4758
PCR 0.7861 0.5675 0.5647 1.3597 0.4781
RF 0.7905 0.5561 0.5533 1.2245 0.4594
GBRT 0.7756 0.5954 0.5926 1.1476 0.4855
NN 0.7954 0.5428 0.5400 1.4290 0.4509

Table 2: OOS Forecasting Performance, US Stocks
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OLS Individual v.s. Pooled Fit - S&P 500

R2 MSE* QLike*
Model Individual  Pooled | Individual Pooled | Individual Pooled
HAR 0.6833 0.7052 0.4253 0.3962 0.4305 0.3737

MIDAS 0.6907 0.6995 0.4158 0.4039 0.3798 0.3729
SHAR 0.6834 0.7057 0.4252 0.3955 0.4335 0.3735
HARQ 0.6775 0.7187 0.4332 0.3780 0.5024 0.3601
HEXP 0.6693 0.7071 0.4442 0.3936 0.4701 0.3721
OLSRM 0.6734 0.7201 0.4383 0.3761 0.4894 0.3583
OLSRM4 0.6654 0.7202 0.4492 0.3761 0.5145 0.3578
OLSIV 0.4551 0.6096 0.7317 0.5248 0.8039 0.4128
OLSALL 0.5514 0.7276 0.6019 0.3660 0.7744 0.3366

Table 3: Individual vs Pooled Fit, S&P 500 Stocks

Yichen Ji Department of Statistics University of Chicago
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OLS Individual v.s. Pooled Fit - U.S. stocks

R2 MSE* QLike*
Model Individual ~ Pooled | Individual Pooled | Individual Pooled
HAR 0.6991 0.7849 0.7953 0.5680 6.1815 0.4886

MIDAS 0.7434 0.7815 0.6777 0.5771 0.6883 0.4914
SHAR 0.6992 0.7850 0.7947 0.5678 5.8682 0.4883
HARQ 0.6379 0.7884 0.9581 0.5587 26.9071 0.4864
HEXP 0.6427 0.7863 0.9452 0.5643 22.3139 0.4827
OLSRM 0.6032 0.7897 1.0501 0.5552 32.1466 0.4819
OLSRM4 0.5933 0.7898 1.0762 0.5550 36.0054  0.4817
OLSIV 0.3112 0.5109 1.8256 1.2951 45.2375 1.0282
OLSALL 0.4051 0.7906 1.5765 0.5529 | 64.0068 0.4758

Table 4: Individual vs Pooled Fit, U.S. Stocks

Yichen Ji Department of Statistics University of Chicago
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Diebold-Mariano (DM) Test - S&P 500

Model | HAR MIDAS SHAR HARQ HEXP OLSRM OLSRM4 OLSIV OLSALL LA
MIDAS |-50.2 - - - - - - - -

SHAR | 28.0 55.6 - - - - - - -

HARQ |135.5 153.6 131.0 - - - - - -

HEXP | 435 725 285 -109.6 - - - - -
OLSRM |141.6 169.0 142.6 345 126.7 - - - -
OLSRM4(139.9 167.4 1409 332 1251 13 - - -

OLSIV |-27.4 -258 -276 -31.4 -28.0 -31.8 -31.8 -
OLSALL |114.8 1453 1134 59.3 107.8 521 52.3 34.6 -
LASSO |112.8 1414 1112 56.7 106.3 49.0 48.9 34.6 -1.0

PCR |81.8 1102 794 16.1 76.0 8.5 8.4 329 -828  -C

RF 83.0 1121 80.0 10.2 724 1.4 1.2 320 -436 -4

GBRT | 40 180 27 -305 -09 -343 -34.4 289 -603 -€

NN 131.2 159.7 129.2 84.1 120.7 74.7 73.7 35.4 28.6 2

Table 5: Diebold-Mariano Test, S&P 500 Stocks

Yichen Ji Department of Statistics University of Chicago
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Diebold-Mariano (DM) Test - U.S. Stocks

Model | HAR MIDAS SHAR HARQ HEXP OLSRM OLSRM4 OLSIV OLSALL LA
MIDAS | -96.8 -
SHAR | 19.2 99.6 - - - - - - -
HARQ |138.8 197.1 137.7 - - - - - -
HEXP |109.5 1459 96.4 -75.9 - - - - -
OLSRM |167.5 2422 170.8 100.2 125.8 -
OLSRM4|143.9 218.4 1451 61.7 106.8 4.4 - - -
OLSIV |-103.9 -102.7 -104.0 -105.4 -104.4 -105.9 -105.9 - -
OLSALL |156.0 236.7 156.8 89.1 121.3 40.2 55.2 106.5 -
LASSO (1775 248.7 178.6 101.6 139.3 385 242 106.5 -11.7
PCR 55.3 119.0 504 -66.3 -8.1 -1056 -957 1048 -1249 -1
RF 80.6 1358 79.2 300 614 109 9.5 106.6 -1.9 ]
GBRT |-41.2 -259 -415 -56.7 -47.6 -62.6 -62.9 1047 -675 €
NN 197.4 278.7 1949 1344 1765 110.1 108.7 108.1 1015  1(

Table 6: Diebold-Mariano Test, U.S. Stocks

Yichen Ji Department of Statistics University of Chicago

Realized Volatility Forecasting with ML 34 / 49
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Conclusion & Discussion

Empirical Conclusion: Shallow neural networks deliver superior
out-of-sample predictive performance compared to existing
OLS-based regression models.

Discussion:

® Inclusion of jumps and microstructure noise consideration

® How to impose economic structure based on domain
knowledge of economic and finance theory

® Economic gain and implications from machine learning
volatility forecast & real-world execution

® Engineering optimization tricks v.s. interpretability for more
complex network architecture

Yichen Ji Department of Statistics University of Chicago
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Possible Future Directions

® Try jump-robust and microstructure noise-robust estimators as
features

® Tweak nonlinear models to focus on stocks with lower
arbitrage and transaction costs

® Tailed machine learning model and network architecture design

Yichen Ji Department of Statistics University of Chicago
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