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Introduction: Low Rank Matrix Completion

Goal: Estimate a low rank matrix by its partial and noisy entries
Technical Requirement: Statistically and computationally
efficient algorithm
Valid Paradigms: Both convex relaxation and nonconvex
optimization

Problem Formulation

min
X∈Rn1×n2

F (X)

s.t. rank(X) ≤ r
(1)

where F : Rn1×n2 → R is a given convex loss function.
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Nonconvex Approach I: Formulation

Burer-Monteiro Factorization[BM03]

Let X = LRT , where L ∈ Rn1×r and R ∈ Rn2×r, we have

min
L∈Rn1×r,
R∈Rn2×r

f(L,R) := F (LRT ) + reg(L,R) (2)

Here, f(L,R) represents the objective function composed of the
convex loss F (LRT ) and a regularization term reg(L,R).

Key change: for low rank case (r ≪ min{n1, n2}), the size of all
the variables is approximately linear (L,R) in n1 + n2, while
originally the variables (X) are quadratic.
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Nonconvex Approach II: Iterative Schemes I

Three major classes of iterative schemes to find global optimum [CC18]:

(Projected) Gradient Descent [BM05, KMO09, KMO10,
CW15, WCCL16, SL16, ZL16, MWCC18]

Minimize a loss function f(L,R) w.r.t (L,R):

Lt+1 = PL
[
Lt − ηt∇Lf(L

t, Rt)
]

(3)

Rt+1 = PR
[
Rt − ηt∇Rf(L

t, Rt)
]

(4)

where ηt is the step size and PL,PR denote the Euclidean projection
onto the sets L and R.

(Projected) gradient descent is the best by its simple form, cheap
iteration cost and efficiency [CC18].
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Nonconvex Approach II: Iterative Schemes II

Alternating Minimization[JNS13, Har14]

Hold other factors constant, optimize one of the factors alternatively by a
convex problem:

Lt+1 = arg min
L∈Rn1×r

f(L,Rt) (5)

Rt+1 = arg min
R∈Rn2×r

f(Lt+1, R) (6)

Singular Value Projection (SVP) [JMD10, NUNS+14, JN15]

GD on F (LRT ) in the n1 × n2 matrix space, then use SVD to project
back to the factor space:

(Lt+1, Rt+1) = SVDr

[
LtRtT − ηt∇F (LtRtT )

]
(7)

where SVDr(Z) returns the top rank-r factors of Z.
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Conclusion for Nonconvex and Inspirations for Convex Relaxation

Nonconvex Optimization:

▶ Efficient

▶ Theoretical guaranteed for estimation accuracy

▶ Properties such as local convergence, implicit regularization,
global convergence (saddle-escaping algorithms with strict
saddle property) would give satisfactory results.

Convex Relaxation:

▶ Worthwhile to solve a semidefinite and convex programs for
large-scale or high-dimensional problems?

▶ Faithful in practice

▶ Not explained for long until [CCF+19]
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Convex Relaxation

Problem Reformulation from (1)

min
X∈Rn1×n2

F (X) + λ rank(X) (8)

where F is a convex function and λ > 0 is a regularization
parameter.

Convex Relaxation

Remove the nonconvex rank function by convex terms.

min
X∈Rn×n

g(X) := F (X) + λ∥X∥∗ (9)

where ∥ · ∥∗ is the nuclear norm. More specifically, we consider:

min
X∈Rn×n

g(X) :=
1

2

∑
(i,j)∈Ω

(Xij −Mij)
2 + λ∥X∥∗ (10)
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High Level Ideas for Convex Proofs
Main difficulty for convex relaxation solutions: it does not
have closed-form solutions that would give reliable guarantees.
High-level idea: Prove that the nonconvex solutions are close to
convex solutions (i.e. a tight approximation to convex solutions)
[CCF+19].
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Figure: Empirical Evidence for Closeness
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Main Results - Model Assumptions

Random Sampling (Assumption 1)

Each index (i, j) belongs to the index set Ω independently with
probability p.

Random Noise (Assumption 1)

The noise matrix E = [Eij ]1≤i,j≤n is composed of i.i.d. zero-mean
sub-Gaussian random variables with sub-Gaussian norm at most
σ > 0, i.e. ∥Eij∥ψ2

≤ σ

Incoherence condition

A rank-r matrix M⋆ ∈ Rn×n with SVD M⋆ = U⋆Σ⋆V ⋆⊤ is said to
be µ-incoherent if ∥U⋆∥2,∞ ≤

√
µ
n ∥U

⋆∥F =
√

µr
n and

∥V ⋆∥2,∞ ≤
√

µ
n ∥V

⋆∥F =
√

µr
n
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When Rank and condition number are constants O(1)
Theorem 1 Let M⋆ be rank-r and µ-incoherent with a condition number
κ, where the rank and the condition number satisfy r, κ = O(1).
Suppose that Assumption 1 holds and take λ = Cλσ

√
np in (10) for

some large enough constant Cλ > 0. Assume the sample size obeys
n2p ≥ Cµ2n log3 n for some sufficiently large constant C > 0, and the

noise satisfies σ ≲
√

np
µ3 logn ∥M⋆∥∞ for some sufficiently small constant

c > 0. Then with probability exceeding 1−O
(
n−3

)
:

1. Any minimizer Zcvx of (10) obeys

∥Zcvx −M⋆∥F ≲
σ

σmin

√
n

p
∥M⋆∥F ; ∥Zcvx −M⋆∥ ≲

σ

σmin

√
n

p
∥M⋆∥

∥Zcvx −M⋆∥∞ ≲
σ

σmin

√
µn log n

p
∥M⋆∥∞ .

2. Letting Zcvx,r ≜ argminZ:rank(Z)≤r ∥Z −Zcvx∥F be the best rank-r
approximation of Zcvx, we have

∥Zcvx,r − Zcvx∥F ≤ 1

n3
· σ

σmin

√
n

p
∥M⋆∥
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Breakdown of required conditions and implications
▶ Sample complexity: the sample size needs to exceed the order of

npolylogn, which is information-theoretically optimal up to some
logarithmic term.

▶ Noise size: the size of the noise in each entry is allowed to be
substantially larger than the maximum entry in the matrix i.e. can
have a very small signal-to-noise ratio w.r.t. each observed entry.

▶ Nearly low-rank structure of the convex solution: the optimizer
of the convex program is almost if not exact, rank-r.

▶ Implicit regularization: the convex approach implicitly controls the
spikiness of its entries, without resorting to explicit regularization.

▶ Entry-wise and spectral norm error control: the estimation
errors of the convex optimizer are fairly spread out across all entries,
thus implying near-optimal entry-wise error control.

▶ Statistical guarantees for fast iterative optimization methods:
when these convex optimization algorithms converge w.r.t. the
objective value, they are guaranteed to return a statistically reliable
estimate e.g. SVT, FPC, SOFT-IMPUTE, etc.
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When rank and condition number can grow with n
Theorem 2 Let M⋆ be rank-r and µ-incoherent with a condition number
κ. Suppose Assumption 1 holds and take λ = Cλσ

√
np in (10) for some

large enough constant Cλ > 0. Assume the sample size obeys
n2p ≥ Cκ4µ2r2n log3 n for some sufficiently large constant C > 0, and

the noise satisfies σ
√

n
p ≤ c σmin√

κ4µr logn
for some sufficiently small

constant c > 0. Then with probability exceeding 1−O
(
n−3

)
,

1. Any minimizer Zcvx of (10) obeys

∥Zcvx −M⋆∥F ≲ κ
σ

σmin

√
n

p
∥M⋆∥F ; ∥Zcvx −M⋆∥ ≲

σ

σmin

√
n

p
∥M⋆∥

∥Zcvx −M⋆∥∞ ≲
√
κ3µr · σ

σmin

√
n log n

p
∥M⋆∥∞

2. Letting Zcvx,r ≜ argminZ:rank(Z)≤r ∥Z − Zcvx∥F be the best rank-r
approximation of Zcvx, we have

∥Zcvx,r − Zcvx∥F ≤ 1

n3
· σ

σmin

√
n

p
∥M⋆∥
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Approximate nonconvex optimizer

Idea: Lack of closed-form primal solution to (10) → Invoke an iterative
nonconvex algorithm to approximate such a primal solution.
Algorithm: Construction of an approximate primal solution

▶ Initialization: X0 = X⋆;Y 0 = Y ⋆

▶ Gradient updates: for t = 0, 1, . . . , t0 − 1 do

Xt+1 = Xt−η∇Xf
(
Xt,Y t

)
= Xt−η

p

(
PΩ

(
XtY t⊤ −M

)
Y t + λXt

)
Y t+1 = Y t−η∇Y f

(
Xt,Y t

)
= Y t−η

p

([
PΩ

(
XtY t⊤ −M

)]⊤
Xt + λY t

)
where η > 0 is the step size, PΩ represents the projection on the the
subspace matrices supported on Ω.
Note: This algorithm is not practical since it starts from the ground
truth, so it’s mainly used to simplify theoretical analysis. One can apply
spectral initialization to make it practical.
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Thank You
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