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Abstract

Realized volatility (RV) represents a nonparametric ex-post estimate of the return
variation. Real-time estimates and forecasts of realized volatility play a crucial role in
option pricing, trading, and risk management. This paper investigates the predictive
power of machine learning models for forecasting future realized volatility in the equity
market. By leveraging high-frequency intraday prices and implied volatilities (IV)
derived from equity options, our empirical results within the S&P 500 universe reveal
that shallow neural networks deliver superior out-of-sample predictive performance
compared to existing OLS-based regression models. Furthermore, our findings are
robust and scalable, extending to a much broader U.S. stock universe encompassing
over 10,000 stocks spanning from 1996 to 2022.
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1 Introduction

Realized volatility (RV) is a measure of volatility at a lower frequency using data at a
higher frequency, derived from the sum of intraday squared returns. This measure provides
a more accurate reflection of asset volatility than models based on daily or lower frequency
return observations and strong parametric assumptions, as it captures the intra-day price
movements that are otherwise averaged out in daily data. The granularity of high-frequency
data allows for a nuanced understanding of market dynamics, making RV a pivotal object
of interest in financial econometrics.

Given that volatility exhibits a relatively high signal-to-noise ratio compared to asset
returns and that the availability of high-frequency intraday data supplies a large-scale dataset
sufficient in both the number of data points and diversity of features, it stands to presume
that realized volatility can be effectively predicted using machine learning techniques. As
highlighted by Kelly et al. (2023), the presence of large conditioning panel information sets
and ambiguous functional forms are two pivotal factors that underscore the potential of
machine learning in financial research. This perspective echoes the reminder of Cochrane
(2009) in that investors utilize conditioning information in ways that are not fully observable
to researchers, thereby presenting a significant challenge in encapsulating such behaviors
within a parametric statistical model comprehensively. These attributes align closely with
the challenges faced in forecasting realized volatility, highlighting the suitability of machine
learning approaches in addressing these complexities.

In this thesis, we apply a range of machine learning models for forecasting one-day-ahead
realized volatility. The objective is to compare the predictive performance of these models
against conventional time-series econometric models, which have traditionally dominated
the task of volatility forecasting. Our approach involves a systematic examination of various
machine learning algorithms, including LASSO, Principal Component Regression (PCR),
Random Forest (RF), Gradient Boosting Regression Trees (GBRT), and neural networks, to
identify the most effective technique for capturing the predictability of realized volatility.

We conduct a large-scale empirical analysis in the realm of the S&P 500 equity universe
from 1996 to 2022 and demonstrate that shallow neural networks provide superior out-of-
sample predictive performance relative to traditional OLS-based regression models and other
machine learning methods. We construct a comprehensive set of 122 features motivated
by the existing literature. This set comprises 15 realized features, 102 features derived
from the implied volatility of call and put equity options across various deltas, and 4 price-
volume features that carry potentially predictive information based on overnight returns and
trading volume. Additionally, a constant term is included to complete the feature set for
our machine learning models. Furthermore, our empirical analysis extends to an expansive
dataset encompassing over 10,000 U.S. stocks spanning the period from 1996 to 2022. We
show that shallow neural networks continue to dominate other models and outperform out-
of-sample in terms of various evaluation metrics.

The rest of the paper is structured as follows. Section 2 conducts a comprehensive
review of existing literature on volatility estimators and forecasting models. Section 3 sets
up the theoretical formulation of realized volatility measures and provides an overview of
the collection of econometric and machine learning models we employ in this paper. Section
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4 summarizes the high-frequency intraday data and features we use for machine learning
models. Section 5 presents our empirical results in both the S&P 500 universe and a much
broader set of U.S. stocks. Section 6 concludes with a discussion of the findings of this
study. The implementation details of our end-to-end machine-learning pipeline can be found
in Appendix A.
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2 Literature Review

This section provides a comprehensive review of existing literature in realized volatility
models, alternative robust realized volatility measures, and machine learning applications in
economics and finance.

As Engle and Patton (2007) points out, a good volatility model must be able to forecast
volatility and incorporate certain stylized facts about volatility, for example, persistence,
clustering, (local) mean-reversion, fat tails, leverage effects, asymmetric innovations, etc.
On the one hand, ARCH/GARCH-type of models of Engle (1982) and Bollerslev (1986)
and stochastic volatility models of Ghysels et al. (1996) are pivotal in financial econometrics
for forecasting time-varying return volatilities and modeling conditional distributions. On
the other hand, with the availability of high-frequency intraday financial data, Andersen
and Bollerslev (1998) suggested using realized squared intraday returns for more accurate
measurement of the true latent volatility factor in the ARCH and stochastic volatility models.
Andersen et al. (2003) formally introduced the notion of realized volatility as a proxy measure
of return variability and provided satisfying theoretical guarantees based on the quadratic
variation theory, which motivated further development of modeling and forecasting daily and
lower frequency volatility using realized volatility.

2.1 OLS-based Models

Early econometrics literature proposed various time-series volatility models whose features
are motivated by structural economics assumptions and constructed based on lagged daily
RVs, and whose parameters are estimated by ordinary least squares (OLS).

Ghysels et al. (2006) proposes mixed data sampling (MIDAS) whose regression weights
are parameterized by a flexible function form and empirically argues that the realized daily
power, calculated as the sum of intraday absolute returns, dominates other daily volatility
predictors in consideration such as past daily squared returns, daily absolute returns, and
realized volatility, both in-sample and out-of-sample.

The heterogeneous autoregressive (HAR) model of Corsi (2009) is an AR-type model
that identifies different reactions to historical realized volatilities of different time horizons,
which has arguably become a common benchmark model in the realized volatility forecasting
literature.

Busch et al. (2011) analyzes the role of implied volatility in forecasting future realized
volatility by including implied volatility from option prices as an additional regressor in the
HAR setting and provides evidence for the sizable incremental forecasting power of implied
volatility after controlling for possible endogeneity issues in the regressors. Andersen et al.
(2007b) discusses the relative informativeness of implied volatility and time series-based
volatility forecasts.

Andersen et al. (2007a) suggests the decomposition of RV into its continuous and jump
components based on the bipower variation measures of Barndorff-Nielsen and Shephard
(2006) and proposes alternative HAR-J and HAR-CJ models that include jump and con-
tinuous sample path variability measures as additional regressors in the HAR formulation.
Jumps are empirically found much less persistent and predictable, and thus have limited use
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for forecasting future volatility.
Building on the realized semivariance estimator proposed by Barndorff-Nielsen et al.

(2008b), the semivariance-HAR (SHAR) model of Patton and Sheppard (2015) decomposes
realized volatility into signed realized semivariance terms as predictors in the standard HAR
formulation and demonstrates that negative realized semivariance plays a more informative
role in forecasting future volatility than its positive counterpart.

Realized quarticity (RQ) is a consistent estimator of the integrated quarticity (IQ) that
characterizes the asymptotic variance as shown in Barndorff-Nielsen and Shephard (2002).
Motivated by the asymptotic theory and a hypothetical link between IQ and the well-known
attenuation bias arising from the presence of measurement errors, Bollerslev et al. (2016)
proposes the HAR-quarticity (HARQ) model that allows the coefficients to explicitly vary as
a function of the realized quarticity and demonstrates superior out-of-sample performance
with robustness checks using alternative RV and RQ estimators and model specifications.

Bollerslev et al. (2018) introduces a heterogeneous exponential (HExp) realized volatil-
ity model whose features are constructed using an exponentially weighted moving average
(EWMA) of lagged realized volatility factors with similar horizons used in the HAR model.

There is no consensus on the impact of overnight returns and trading volume for out-
of-sample realized volatility forecasting. Todorova and Souček (2014) shows none of the
liquidity measures or overnight returns as additional regressors can contribute significantly
to an out-of-sample forecasting improvement. Ahoniemi and Lanne (2013) highlights the
importance of choosing how to treat overnight returns when determining the RV estimator
to which different out-of-sample volatility forecasts are compared. Liu et al. (2023) draws
evidence of the impact of trading volume on forecasting RV from the Chinese stock market.

2.2 ML-based Models

In recent years, there has been a surge of empirical attempts to use machine learning models
and neural networks to forecast realized volatilities.

Hillebrand and Medeiros (2010) studies the benefits of bagging (bootstrap aggregation)
log-linear models for forecasting realized volatility. Audrino and Knaus (2016) shows equal
performance between the HAR model and the least absolute shrinkage and selection operator
(LASSO) approach out-of-sample. Luong and Dokuchaev (2018) integrates the HAR model
with random forest (RF) algorithms and illustrates improved out-of-sample performance for
forecasting both the direction of the realized volatility as a classification problem and realized
volatility in a regression setting. Carr et al. (2019) echos the study on the predictability of
option price and implied volatility at monthly realized volatility and applies Ridge, random
forest, and feed-forward neural network models to improve predictability in the context of
volatility indexing.

Bucci (2020) investigates the predictive performance of feed-forward neural networks
(FFNN), recurrent neural networks (RNN), and long short-term memory networks (LSTM),
which shows that RNNs outperform traditional econometric methods but LSTM doesn’t pro-
duce significant forecasting improvement. Reisenhofer et al. (2022) proposes a dilated convo-
lutional neural network (CNN) called HARNet, which generates substantial improvements
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relative to the baseline HAR model with the standard OLS fit, but little to no improvements
relative to the HAR model with the weighted least squares (WLS) following Patton and
Sheppard (2015) or the log-OLS where the input time series is log-transformed. Reisenhofer
et al. (2022) also discusses the choice of the objective function for training and prefers the
QLIKE loss function proposed by Patton (2011) since it stabilizes the model training and
optimization, whereas Rahimikia and Poon (2020) yields substantial degradation in fore-
casting performance for high volatility days when the loss function changes from MSE to
QLIKE.

Rahimikia and Poon (2020), Li and Tang (2022), Christensen et al. (2023), and Zhang
et al. (2024) conduct extensive empirical comparative analysis on different machine learning
models and neural network architectures such as regularized regression, tree-based regression,
principal component regression, neural networks, etc., and report improvement in out-of-
sample RV forecasts relative to the HAR benchmark using random forest, feed-forward neural
networks, and ensemble models.

2.3 Alternative RV measures

Not only have different volatility models been proposed, but researchers have also improved
nonparametric realized volatility estimators that are robust to jumps and microstructure
noise, which is closely related to another important strand of literature in jump identification
and tests. Important contributions include the bipower variation estimator by Barndorff-
Nielsen and Shephard (2006), the two-scale estimator of Zhang et al. (2005), the multi-scale
estimator of Zhang (2006), the realized kernel estimator of Barndorff-Nielsen et al. (2008a),
the pre-averaged estimator of Podolskij and Vetter (2009), the MinRV and MedRV estimators
of Andersen et al. (2012), likelihood-based estimator of Da and Xiu (2021). There is also a
growing body of research focused on assessing the forecasting capabilities of these alternative
RV estimators. Studies by Hansen and Lunde (2006), Bandi et al. (2008), Andersen et al.
(2011), Ghysels and Sinko (2011), Bandi and Russell (2008), Andersen et al. (2011) and
Caporin (2023) are notable in this regard.

2.4 ML applications in Economics and Finance

Machine learning and neural networks have shown great potential in finance and economics
research in recent years. Athey et al. (2018) discusses integrating machine learning into vari-
ous aspects of economic research, including policy analysis, causal inference, model selection,
and empirical studies in economics. Giglio et al. (2022) surveys recent methodological con-
tributions in asset pricing using factor models and machine learning. Nagel (2021) takes the
perspective of machine learning methods as models of investor belief formation and investor
learning in high-dimensional environments.

In a closely related canonical problem of empirical asset pricing, namely cross-sectional
return prediction, Gu et al. (2020) demonstrates large economic gains using machine learning
forecasts and finds that shallow learning outperforms deeper learning in the outperforming
tree-based algorithms and neural networks. Chen et al. (2024) investigates deep neural
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networks and proposes a stochastic discount factor (SDF) network architecture based on
generative adversarial network (GAN) and recurrent neural network (RNN) with long short-
term memory (LSTM) cells. Kelly et al. (2024) promotes using the model with the largest
number of parameters possible when the true data-generating process (DGP) is unknown
since the expected out-of-sample forecast accuracy and portfolio performance are strictly
increasing in model complexity when appropriate shrinkage is applied.
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3 Methodology

This section characterizes the mathematical formulation of realized volatility (RV) and dif-
ferent proposals for RV estimators we consider in this paper. Here, we focus on the setting
of a standard continuous Itô process without jumps for presentation simplicity. One can
refer to Andersen and Teräsvirta (2009) and McAleer and Medeiros (2008) for technical and
theoretical results in the econometric formulation of realized volatility under more general
settings, for example, incorporating jumps and microstructure noise. We also provide a
concise introduction to the five machine-learning models we employ in this paper. One can
refer to Gu et al. (2020) and Kelly et al. (2023) for a more comprehensive review of machine
learning models and their applications in finance.

3.1 Theoretical Foundation

To set out the notation, assume the log price pt within the active part of a trading day t
follows a continuous semimartingale of the form

dpt “ µtdt ` σtdWt (1)

or equivalently, in the integral form

pt “

ż t

t´1

µsds `

ż t

t´1

σsdWs (2)

where W is a standard Brownian motion, µt and σt, denote a locally bounded drift and a
strictly positive càdlàg instantaneous volatility process, respectively. The quadratic variation
(QV) of this log-price diffusion process is

rp, pst “

ż t

t´1

σ2
sds (3)

The true unobservable volatility construct that integrates the instantaneous volatility
over time is called integrated volatility (IV) defined as

IVt “

ż t

t´1

σ2
sds (4)

Notice that the quadratic variation and integrated volatility coincide under setting (1),
which is not the case when we consider more general assumptions for the log price process,
for example, the jump-diffusion process.

Since we do not obtain a continuous reading from a diffusion process and can only observe
intraday price observations in discrete time, the unobservable integrated volatility/quadratic
variation can be consistently estimated by the sum of squared intraday log returns which we
call realized volatility (RV) 1

1Here, we use the terms volatility and variance interchangeably for both RV and IV. Some literature
denotes volatility specifically as the squared root of variance measure.
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RVt “

M
ÿ

i“1

r2t,i
p
ÝÑ IVt (5)

where rt,i denotes the ith ∆-period log return within day t rt,i “ pt´1`i∆ ´ pt´1`pi´1q∆ and

therefore, the daily log return for the day t is rt “
řM

i“1 rt,i.
In general, consider an equally spaced discrete time partition tt´ k `

j
M
, j “ 1, ...,M ¨ ku

of a k-day time interval from t ´ k to t, rt ´ k, ts, where M is the number of observations
per day, and we correspondingly denote ∆ “ 1

M
as the intraday sampling frequency. For

example, if one samples once every 5 minutes over a typical 6.5-hour trading session (∆ “ 5
mins), M “ 78 observations will be collected daily.

The semimartingale theory shows that the realized volatility converges to the quadratic
variation in probability (Jacod and Protter (1998), Andersen et al. (2003)). Barndorff-
Nielsen and Shephard (2002) derives the asymptotic theory of the convergence of realized
volatility to integrated volatility: In the absence of price jumps, as the number of intraday
observations per day M Ñ 8 or equivalently, the sampling frequency ∆ Ñ 0,

?
M

ˆ

RVt ´ IVt
?
2IQt

˙

d
ÝÑ Np0, 1q (6)

where IQt “
şt

t´1
σ4
sds denotes integrated quarticity, which is independent of the limiting

Gaussian distribution and can be consistently estimated by the realized quarticity (RQ)
statistic:

RQt “
M

3

M
ÿ

i“1

r4t,i
p
ÝÑ IQt (7)

Note that the consistency and asymptotic results don’t hold in the presence of jumps and
microstructure noises. RV consistently estimates the sum of IV and squared jumps if jumps
are present. When microstructure effects are non-negligible, RV estimates are asymptotically
swamped by noise and fail to converge to the IV of the underlying true equilibrium log price
process.

3.2 Econometric Models

3.2.1 HAR

The heterogeneous autoregressive (HAR) model considers different volatility components
realized over different time horizons (day, week, month), which echos the Heterogeneous
Market Hypothesis proposed by Müller et al. (2008) that agents with daily, weekly, and
monthly trading frequencies perceive and respond to, altering the corresponding components
of volatility. HAR can be interpreted as a restricted AR(21) model with only 4 parameters
to estimate instead of 22 in the standard AR(21) model by imposing economically sensible
structural assumptions. Our HAR model specification extends the heterogeneity idea with
an additional quarterly RV term:
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RVt “ β0 ` βdRV d
t´1 ` βwRV w

t´1 ` βmRV m
t´1 ` βqRV q

t´1 ` ϵt, (8)

where RV l
t´1 “ 1

l

řl
i“1RVt´i, l “ t1, 5, 22, 63u is the simple average of daily RVs over differ-

ent lag horizons (daily, weekly, monthly, quarterly, respectively), and tϵtut is a zero mean
innovation process.

HAR is widely used as the benchmark model in the volatility forecasting literature due
to its simplicity and parsimony.

3.2.2 MIDAS

The mixed data sampling (MIDAS) model is a unified framework that enables flexible choices
of data sampling frequency and window length, which can be viewed as a smoothly weighted
moving average of lagged daily RVs and specified in the following beta polynomial form:

RVt “ β0 ` β1MIDASt´1 ` ϵt,

MIDASt “
1

řL
i“1 ai

L
ÿ

i“0

ai`1RVt´i,

ai “

ˆ

i

L

˙θ1´1 ˆ

1 ´
i

L

˙θ2´1
Γ pθ1 ` θ2q

Γ pθ1qΓ pθ2q
, i “ 1, ..., L.

(9)

where Γp¨q denotes the Gamma function, L is the lookback window cutoff hyperparameter,
θ1, θ2 are hyperparameters that control the Beta function specification.

Essentially, the MIDAS model provides a tractable structure to parameterize the weights
of the lagged RVs. For example, the HAR model can be interpreted as a special case of
MIDAS with ai being step functions instead of Beta functions. Note that the hyperparam-
eters L, θ1, θ2 in (9) need to be tuned. We follow the choice of Li and Tang (2022) where
θ1 “ 1, L “ 50, and θ2 is selected by grid search that minimizes the MSE over the full sample.

3.2.3 SHAR

The semivariance-HAR (SHAR) model leverages the realized semivariance (RS) estimator
proposed by Barndorff-Nielsen et al. (2008b) that decomposes the total variation into the
signed components, that is, variation due to only negative or positive returns. The realized
semivariances are defined as:

RS`
t “

M
ÿ

i“1

r2t,iI trt,i ą 0u ,

RS´
t “

M
ÿ

i“1

r2t,iI trt,i ă 0u .

(10)

Notice that RVt “ RS`
t ` RS´

t . We adopt the main HAR model extension proposed in
Patton and Sheppard (2015) that only decomposes the most recent daily RV, RV d:

RVt “ β0 ` β`
d RSd`

t´1 ` β´
d RSd´

t´1 ` βwRV w
t´1 ` βmRV m

t´1 ` βqRV q
t´1 ` ϵt, (11)
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3.2.4 HARQ-F

The HARQ-F model further exploits the heteroskedasticity in the measurement error based
on the HAR model by including the realized quarticity terms over different time horizons:

RVt “ β0 ` pβd ` ϕd

b

RQd
t´1qRV d

t´1 ` pβw ` ϕw

a

RQw
t´1qRV w

t´1 ` pβm ` ϕm

a

RQm
t´1qRV m

t´1`

pβq ` ϕq

b

RQq
t´1qRV q

t´1 ` ϵt

“ β0 ` βdRV d
t´1 ` βwRV w

t´1 ` βmRV m
t´1 ` βqRV q

t´1 ` ϕdRV d
t´1

b

RQd
t´1`

ϕwRV w
t´1

a

RQw
t´1 ` ϕmRV m

t´1

a

RQm
t´1 ` ϕqRV q

t´1

b

RQq
t´1 ` ϵt

(12)
According to Bollerslev et al. (2016), we can rewrite the asymptotic distribution (6) as

RVt “ IVt ` ηt, ηt „ Np0, 2∆IQtq (13)

where the estimation error ηt follows a Normal distribution conditional on the realization of
integrated quarticity IQt.

Under some mild assumptions, the variance term 2∆IQt is directly linked to the at-
tenuation bias observed in the HAR coefficients. The HARQ model compensates for this
attenuation bias in HAR forecasts by accounting for the existing uncertainty in realized vari-
ance measurements: on days with a low variance in measurement errors, the daily realized
volatility (RV) offers a stronger signal for predicting the following day’s volatility compared
to days with high variance, and vice versa.

3.2.5 HEXP

The Heterogeneous Exponential (HExp) realized volatility model is based on a mixture of
exponentially weighted moving average (EWMA) volatility factors:

RVt “ β0 ` β1ExpRV 1
t´1 ` β5ExpRV 5

t´1 ` β25ExpRV 25
t´1 ` β125ExpRV 125

t´1 ` ϵt (14)

where

ExpRV
CoMpλq

t “

500
ÿ

i“1

e´iλ

e´λ ` e´2λ ` ¨ ¨ ¨ ` e´500λ
RVt´i`1 (15)

is the EMWA of lagged daily RVs and CoMpλq is called the pre-specified center-of-mass
(CoMpλq P t1, 5, 25, 125u in (14)), which is formally defined as the weighted-average period
for the lags used

CoMpλq ”

ř8

t“0 e
´λtt

ř8

t“0 e
´λt

“
e´λ

1 ´ e´λ
(16)
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and the decay rate can be reversely computed by λ “ logp1 ` 1
CoM

q. As specified in the
footnote of Bollerslev et al. (2018), we ignore the specification that the sum in (15) only
uses the first 500 lags to achieve a simple formula and the influence of the remaining lags is
numerically negligible.

The authors also propose a global risk factor (GlRV), defined as the average normalized
RVs across all assets, to capture spillover effects in realized volatility within and across asset
classes. Correspondingly, ExpGlRV m is defined as the m-day center-of-mass EWMA of the
realizations of GlRV, resulting in the HExpGl realized volatility model after including this
global risk factor:

RVt “ β0`β1ExpRV 1
t´1`β5ExpRV 5

t´1`β25ExpRV 25
t´1`β125ExpRV 125

t´1 `βGl
5 ExpGlRV 5

t´1`ϵt
(17)

3.3 Machine Learning Models

3.3.1 LASSO

Least Absolute Shrinkage and Selection Operator (LASSO) is a regression method that in-
duces sparsity and performs both variable selection and regularization to enhance the predic-
tion accuracy and interpretability of the statistical model it produces. LASSO is particularly
effective in scenarios where the number of features exceeds the number of observations or in
cases of multicollinearity among predictors.

LASSO introduces a penalty to the regression model, which is equivalent to the absolute
value of the coefficients’ magnitude. This penalty is regulated by a tuning parameter, λ,
which determines the intensity of the penalty. As λ increases, more coefficients are driven to
zero. Such sparsity is one of LASSO’s key features, as it allows the method to automatically
exclude less influential or redundant predictors, making it highly suitable for models with
a large number of predictors. The optimization problem at the core of LASSO is convex
and efficient algorithms such as coordinate descent are typically employed to find the global
minimum. This robust and computationally efficient approach makes LASSO an attractive
option for handling large datasets.

3.3.2 Principal Component Regression (PCR)

Principal Component Regression (PCR) is a statistical technique that marries the concepts
of principal component analysis (PCA) and multiple linear regression. It’s particularly useful
in situations where multicollinearity exists among predictor variables, or the dataset features
a large number of predictors relative to the number of observations. In PCR, PCA is first
employed to transform the original predictors into a new set of orthogonal components.
These components are linear combinations of the original variables and are selected in such
a way that they capture the maximum variance within the dataset. By focusing on these
principal components instead of the original predictor variables, PCR effectively reduces the
dimensionality of the data.
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The application of PCR proceeds by using these principal components as the new predic-
tor variables in a linear regression model. Typically, only a subset of the principal compo-
nents—those explaining the most variance—are retained for the regression model to mitigate
overfitting. This dimensionality reduction allows the model to focus on the most significant
features of the data, ignoring the noise and less informative variables. PCR is therefore par-
ticularly good at dealing with complex datasets where traditional regression models might
struggle due to overfitting or high degrees of freedom relative to the number of available
observations. However, PCR may discard components that contain important predictive in-
formation if those components do not contribute significantly to variance, potentially leading
to the loss of valuable insights. Additionally, the method relies heavily on the assumption
that high variance directions correlate with important predictive features, which may not
always hold, especially in complex datasets where low variance components could be crucial.

3.3.3 Random Forest (RF)

Random Forest is an ensemble learning method that builds on the simplicity of decision trees
by combining multiple such trees to improve the overall model’s accuracy and robustness.
Each tree in a Random Forest is constructed using a random subset of the data features and
samples, a technique known as bootstrap aggregating, or bagging. This randomness helps
to decrease the model’s variance without substantially increasing its bias, making Random
Forest particularly effective in dealing with overfitting, a common problem with individual
decision trees. The trees operate as a collective, where each tree contributes a vote towards
the final prediction, enhancing the predictive performance across diverse datasets.

One of the key strengths of Random Forest is its versatility in handling both classification
and regression tasks effectively. For regression tasks, such as forecasting realized volatility,
the final prediction is typically the average of the predictions from all trees in the forest.
This ensemble approach not only captures complex interactions between features but also
provides a measure of feature importance based on how often each feature is used to split
data across all trees, offering insights into which predictors are most influential. Moreover,
Random Forest models are less sensitive to outliers and can handle non-linear data without
the need for transformation, making them highly suitable for complex econometric analyses
where traditional linear models might fail.

3.3.4 Gradient Boosting Regression Tree (GBRT)

Gradient Boosting Regression Tree (GBRT) is a powerful ensemble learning technique that
builds on the concept of boosting, where multiple weak models (typically decision trees) are
trained sequentially to correct the errors made by the strong model i.e. the composition
of multiple previous weak models. Each tree in a gradient boosting model is fitted on the
residual errors of the preceding tree, gradually improving the model’s accuracy by focusing
on difficult cases that earlier predictors struggled with. This process continues until a stop-
ping criterion is reached, which could be either a predefined maximum number of iterations
or an indication of overfitting in the strong model, as determined through performance eval-
uations on a separate validation dataset. This iterative error-correction process enhances
the model’s performance, particularly in complex regression tasks where the relationships
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between variables are not straightforward. Gradient boosting effectively reduces bias and
variance, making it highly adept at creating precise models from complex, high-dimensional
data.

The key advantage of GBRT lies in its flexibility and robustness. It allows for the
optimization of different loss functions, which can be tailored to the specific needs of the task,
such as least squares for regression or logistic loss for classification. This makes it extensively
adaptable across various types of data and predictive modeling challenges. Additionally,
GBRT includes several tunable parameters such as the number of trees, depth of trees, and
learning rate, which control the model’s complexity and speed of learning. These features
make gradient boosting a highly effective tool for tasks that require nuanced control over
model training. However, GBRT can be computationally intensive and prone to overfitting,
especially with noisy data or when too many trees are used without adequate regularization.
Additionally, the model’s iterative nature makes it slower for training compared to some
other algorithms, requiring careful tuning and validation to achieve optimal performance.

3.3.5 Neural Networks (NN)

Neural networks are a cornerstone of modern machine learning and deep learning, distin-
guished by their ability to model complex and nonlinear relationships through layers of inter-
connected nodes, or neurons. Our study focuses on the simple feed-forward neural network
architecture, also known as multilayer perceptron (MLP). In a feed-forward neural network,
information moves in only one direction—from the input layer, through one or more hidden
layers, to the output layer. Each neuron in a layer receives input from the previous layer,
processes it using a weighted sum followed by a nonlinear activation function, and passes the
output to the next layer. This architecture allows the network to capture complex patterns
and interactions in the data, making feed-forward neural networks highly effective for a wide
range of prediction tasks.

One of the main advantages of feed-forward neural networks is their flexibility and ca-
pacity for customization. By adjusting the number of layers and the number of neurons
within each layer, these networks can be tailored to specific complexities of the data they are
intended to model. Moreover, their ability to learn non-linear and high-dimensional map-
pings from data makes them particularly suited for challenging tasks like forecasting realized
volatility in financial markets, where traditional linear models often fall short. Additionally,
the training of feed-forward networks through backpropagation—a method for adjusting the
weights of the network by minimizing a loss function—ensures that the model continuously
improves its accuracy by learning directly from the data, adapting to new patterns as they
emerge.
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4 Data and Variables

This section outlines the data and variables for our empirical analysis.

4.1 Data

We consider the S&P 500 constituents and broader U.S. stocks as our two main sample
universes, encompassing 1,000 and 10,014 listed securities, respectively. Our sample begins
in January 1996 and ends in December 2022, totaling 27 years. The primary datasets include
1-minute observations of intraday prices sourced from the NYSE Trade and Quote (TAQ),
supplemented with overnight return and trading volume data obtained from the WRDS
Center for Research in Security Prices (CRSP), and options implied volatility data from
OptionMetrics. The latter focuses on call-and-put options with maturities ranging from one
to three months and absolute deltas varying from 0.1 to 0.9. The extensive scale of our
sample universe is advantageous for examining the out-of-sample performance of machine
learning models in forecasting realized volatility.

The screening process for inclusion in the U.S. stock dataset is executed in several steps
to ensure both the quality and relevance of the data for our empirical study. Initially, the
universe of potential securities exhaustively includes all stocks and ETFs defined in the
CRSP database. To refine this list, several screening criteria are applied: each security is
required to have data available for at least 100 trading days within the sample period from
1996 to 2022, possess implied volatility data from OptionMetrics, and have a start date
before January 1, 2020, to exclude very recent entries, as well as an end date after January
1, 2000, to ensure their presence during the test periods.

As a result of these inclusion criteria, from an initial set of 35, 960 unique Permno iden-
tifiers found in the CRSP database, only 24, 705 securities can be matched with implied
volatility data based on their CUSIP identifiers. The dataset is further reduced as many
securities were excluded due to a lack of available implied volatility data in OptionMetrics.
Ultimately, the dataset is narrowed down to 10, 014 unique assets. Compared to the S&P
500 dataset, the increase in the number of daily RV observations is approximately 6.2 times
greater than that observed in the S&P 500 subset (29779115 versus 4804550 observations),
rather than the anticipated 10 times, largely because many of the newly included securities
had shorter lifespans compared to those in the S&P 500.

4.2 Features and Response Variable

Our feature set includes several distinct groups. Firstly, we construct 15 realized features,
inspired by the HAR-class of econometric models discussed in Section 3.2. Secondly, 102
implied volatility features are derived from the implied volatilities of call and put equity
options, spanning absolute deltas of δ “ 0.1, 0.15, . . . , 0.9, and maturities of 1, 2, and 3
months. Additionally, 4 features are developed based on overnight return and trading volume
data. An intercept term is also included for both OLS-based and machine-learning models.
In total, we consider a comprehensive set of 122 features, which are summarized in Table 1.
Our response variable is the 1-day ahead realized volatility RVt`1 in log-scale.
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Figure 1: Quantiles of RVs, S&P 500

This figure displays the maximum, minimum, 99th, 95th, 75th, 50th, 25th, 5th, and 1st percentiles
of daily realized volatilities in logarithm for stocks in the US stock universe from 1996 to 2022.
The daily realized volatilities are computed using intraday high-frequency returns sampled at a
5-minute frequency.
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Figure 2: Quantiles of RVs, US Stocks

This figure displays the maximum, minimum, 99th, 95th, 75th, 50th, 25th, 5th, and 1st percentiles
of daily realized volatilities in logarithm for stocks in the US stock universe from 1996 to 2022.
The daily realized volatilities are computed using intraday high-frequency returns sampled at a
5-minute frequency.
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Table 1: List of features by model

Model Features

HAR RV d, RV w, RV m, RV q

MIDAS MIDASd

SHAR RSd`, RV d, RV w, RV m, RV q

HARQ RV d, RV w, RV m, RV q, RQd, RQw, RQm, RQq

HEXP ExpRV 1, ExpRV 5, ExpRV 25, ExpRV 125, ExpGlRV 5

OLSRM RV d, RV w, RV m, RV q,MIDASd, RSd`, RQd, RQw, RQm, RQq,

ExpRV 1, ExpRV 5, ExpRV 25, ExpRV 125, ExpGlRV 5 (15 realized features)

OLSRM4 RV d, RV w, RV m, RV q,MIDASd, RSd`, RQd, RQw, RQm, RQq,

ExpRV 1, ExpRV 5, ExpRV 25, ExpRV 125, ExpGlRV 5,

OV N,OV N2, V o, LV P (15 realized features + 4 price volume features)

OLSIV CIV im,δ, P IV im,δ, i “ 1, 2, 3, δ “ ˘0.1,˘0.15, ...,˘0.9 (102 IV features)

OLSALL All 122 features

(15 realized features + 102 IV features + 4 price volume features + 1 intercept)

ML All 122 features

(15 realized features + 102 IV features + 4 price volume features + 1 intercept)

This table reports the list of features for each model. Daily, weekly, monthly, and quarterly

frequency are abbreviated using superscripts d,w,m, q, respectively. The realized features are all

well-defined in Section 3.2. OV N is the daily overnight log return calculated using the holding

period return data from CRSP. OV N2 is the polarized square of overnight return, calculated by

taking the square and keeping the sign of OV N . V o is the trading volume for each security

obtained from CRSP. LV P is the log of the product of trading volume and price. CIV im,δ and

PIV im,δ are implied volatilities from call and put options with δ “ ˘0.1,˘0.15, ...,˘0.9 with

maturity equal to i months, i “ 1, 2, 3. OLSRM is the simple OLS regression model with all 15

realized features as predictors. OLSRM4 is the same as OLSRM but with the inclusion of 4 price

volume features as regressors. OLSIV is the OLS model with all 102 implied volatility features as

predictors. OLSALL is the OLS model with all 122 features as predictors (including an intercept

term). Machine learning (ML) models include LASSO, PCR, RF , GBRT , and NN introduced

in Section 3.3.
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5 Empirical Results

This section introduces the performance evaluation metrics and shows the out-of-sample
volatility forecasting comparison of all 14 models we consider as listed in Table 1 and discusses
our empirical findings for both the S&P 500 universe and the U.S. stocks universe. Appendix
A reports the implementation details for our end-to-end machine learning pipeline such as
model training scheme and hyperparameter tuning.

5.1 Out-of-Sample Performance Evaluation

Different metrics can lead to different or even incorrect rankings of volatility forecasts. Patton
(2011) discusses the robustness of different loss function candidates and proves the mean
squared error (MSE) and quasi-likelihood (QLIKE) are robust to the ranking of competing
volatility forecasts in the presence of noise in the volatility proxy (RV is a volatility proxy
to the latent IV). Patton and Sheppard (2009) argues that QLIKE has the highest power
in the Diebold–Mariano (DM) test which compares the forecast accuracy of two forecasting
models. Based on these findings, we suggest investigating the following 3 metrics together
for out-of-sample forecasting performance evaluation:

• R2 “ 1 ´

ř

i,tpRVi,t´{RVi,tq
2

ř

i,t

´

RVi,t´{RVi,t
benchmark

¯2 ,

• Mean squared error (MSE) “ 1
N

řN
i“1

1
#Ttest

ř

tPTtest

´
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¯2

• Quasi-likelihood (QLIKE) “ 1
N

řN
i“1

1
#Ttest

ř

tPTtest

„

exppRVi,tq

exppyRVi,tq
´

´

RVi,t ´ xRVi,t

¯

´ 1

ȷ

where RVi,t is the true realized volatility, zRVi,t is the RV forecast of our model, HAR is the
benchmark model in R2, N is the number of securities, Ttest is the test time.

5.2 Main Findings

Table 2 reports the out-of-sample results for forecasting future realized volatility for each
model in different metrics in the S&P 500 universe. Neural networks outperform all other
models in all 3 evaluation metrics. Among the OLS-based models, OLSALL demonstrates
sizable improvement in all evaluation metrics compared to the HAR benchmark leveraging
all 122 features in our feature set. There is no significant difference between OLSRM and
OLSRM4, which implies that the additional price-volume features don’t provide predictive
information for the 1-day ahead RV. OLSIV is the worst-performing model among all mod-
els, illustrating little predictive power using implied volatility alone for realized volatility
forecasting. Among machine learning models, LASSO, PCR, and RF achieve similar out-of-
sample forecasting abilities to OLSALL, and GBRT underperforms the worst.

For the U.S. stock universe, Table 3 shows that neural networks still outperform all other
models among all evaluation metrics except for QLIKE. Since neural networks achieve the
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best winsorized QLIKE score after taking the extreme values into account, we can continue
to conclude that the neural network model is the best-performing forecasting model. OLSIV
and GBRT are the worst-performing models out-of-sample.

Model R2 MSE MSE* QLike QLike*
HAR 0.7052 0.3970 0.3962 0.4039 0.3737

MIDAS 0.6995 0.4047 0.4039 0.4018 0.3729
SHAR 0.7057 0.3963 0.3955 0.4029 0.3735
HARQ 0.7187 0.3787 0.3780 0.3912 0.3601
HEXP 0.7071 0.3944 0.3936 0.4015 0.3721
OLSRM 0.7201 0.3768 0.3761 0.3880 0.3583
OLSRM4 0.7202 0.3768 0.3761 0.3874 0.3578
OLSIV 0.6096 0.5257 0.5248 0.4471 0.4128
OLSALL 0.7276 0.3668 0.3660 0.3673 0.3366
LASSO 0.7276 0.3668 0.3661 0.3667 0.3368
PCR 0.7216 0.3748 0.3740 0.3734 0.3416
RF 0.7204 0.3765 0.3758 0.3681 0.3373

GBRT 0.7068 0.3948 0.3941 0.3854 0.3567
NN 0.7321 0.3607 0.3599 0.3576 0.3245

Table 2: Out-of-sample Forecasting Performance, S&P 500 Stocks

This table presents evaluation metrics for out-of-sample RV forecasting performance in the S&P
500 universe. ˚ denotes the winsorized metric where RV extreme values beyond 99.99th percentile
are replaced by the boundary value at 99.99th percentile. The best-performing model is highlighted
in bold in each column.

We also compare the differences in the out-of-sample forecasting results between using
individual fitting and pooled fitting for 9 OLS-based models in Table 5 and Table 6 in Ap-
pendix B. Individual fitting refers to individual estimation for each asset, and pooled fitting
means utilizing panel data to get one set of parameter estimates applied to all assets. All
of the evaluation metrics show that MIDAS is the best-performing model using individ-
ual fitting and OLSALL is the best-performing model using pooled fitting. We also find
that pooled fitting outperforms individual fitting for all models and evaluation metrics in
both the S&P 500 and the U.S. stock universes, and the contrast is more significant when
the model employs more features, especially for OLSIV and OLSALL, which demonstrates
the predictive benefit of pooled panel estimation exploiting the commonality of volatility
dynamics.

We conduct a pairwise Diebold-Mariano (DM) test (Diebold and Mariano (2002)) to
compare the differences in forecasting accuracy between different forecasting models. A
positive test statistic indicates that the model corresponding to the row performs better
than the model corresponding to the column. Table 9 and Table 10 in Appendix B present
the test statistics for all of 14 competing models for the S&P 500 and the U.S. stocks
universe, respectively. In both cases, OLSALL is the best-performing OLS-based model,
and the neural network model remarkably outperforms all other competing models.
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Model R2 MSE MSE* QLike QLike*
HAR 0.7849 0.5708 0.5680 1.5628 0.4886

MIDAS 0.7815 0.5798 0.5771 1.4024 0.4914
SHAR 0.7850 0.5706 0.5678 1.6462 0.4883
HARQ 0.7884 0.5615 0.5587 1.6487 0.4864
HEXP 0.7863 0.5670 0.5643 1.4541 0.4827
OLSRM 0.7897 0.5580 0.5552 1.7167 0.4819
OLSRM4 0.7898 0.5578 0.5550 1.6645 0.4817
OLSIV 0.5109 1.2980 1.2951 1.4857 1.0282
OLSALL 0.7906 0.5557 0.5529 1.5204 0.4758
LASSO 0.7904 0.5563 0.5535 1.5025 0.4758
PCR 0.7861 0.5675 0.5647 1.3597 0.4781
RF 0.7905 0.5561 0.5533 1.2245 0.4594

GBRT 0.7756 0.5954 0.5926 1.1476 0.4855
NN 0.7954 0.5428 0.5400 1.4290 0.4509

Table 3: Out-of-sample Forecasting Performance, US Stocks

This table presents evaluation metrics for out-of-sample RV forecasting performance in the U.S.
stock universe. ˚ denotes the winsorized metric where RV extreme values beyond 99.99th percentile
are replaced by the boundary value at 99.99th percentile. The best-performing model is highlighted
in bold in each column.

6 Conclusions and Discussion

In conclusion, our empirical analysis shows that shallow neural network delivers superior
out-of-sample forecasting performance compared to OLS-based HAR-class models, linear
machine learning models, and tree-based machine learning models.

I would like to highlight several points for further discussion:

• Many econometric conclusions, traditionally derived from empirical analyses with lim-
ited sample sizes, may not be sustainable in the current context due to the modern
scale of data now available. When models and results premised on smaller datasets
are subjected to validation with substantially larger and more diverse datasets, these
data-dependent empirical outcomes may not hold.

• Machine learning models often exhibit high turnover in their portfolio constructions,
making it challenging to achieve substantial net-of-fee excess returns in practical appli-
cations. Moreover, the predictability uncovered by these models tends to concentrate
on stocks with high arbitrage and transaction costs, which limits their value to certain
institutional investors. A crucial prerequisite for the successful implementation of ma-
chine learning models in the market is the ability to effectively tweak nonlinear models
to focus on stocks with lower arbitrage and transaction costs.

• Domain knowledge in economic and finance theory is indispensable for effectively inte-
grating machine learning into financial modeling as addressed by Giglio et al. (2022).
In investment practice, however, emphasizing the economic rationale behind the ex-
planatory factors in forecasting models does not necessarily enhance profit-making
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opportunities; rather, forecasting accuracy is paramount. Focusing on whether ex-
planatory factors have an economic underpinning may not invariably contribute to the
stability of predictions.

• The economic implications of the gains from machine learning volatility forecasts that
outperform existing HAR models remain an open problem as pointed out by Kelly
et al. (2023). Understanding the practical benefits and the incremental value added
by advanced machine learning techniques compared to traditional models is crucial for
further adoption in financial practices.
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A Appendix: Implementation

A.1 Insanity Filter

Following Swanson and White (1997), Bollerslev et al. (2018), and Li and Tang (2022), we use
an insanity filter to avoid deflation in out-of-sample R2, that is, we replace any RV forecast
that exceeds the maximum in the training sample with the observed maximum, and vice
versa. Having this insanity filter allows for empirically more meaningful model comparisons.
We report the effect of the insanity filter in Table 7 and 8 for the S&P 500 and the U.S.
stock universe, respectively.

A.2 Training Scheme

We employ a rolling window approach to train our machine learning models using pooled
panel data from the entire stock universe. Specifically, each window spans seven years,
allocated as 5 years for training, 1 year for validation, and 1 year for testing. This method
preserves the temporal and chronological order of the train-validation-test sequence, ensuring
that the models do not inadvertently use future information. We refit the models annually
by shifting the training, validation, and testing windows forward by one year.

A.3 Choice of Tuning Hyperparameters

Table 4 provides the tuning hyperparameters for the machine learning models.
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Model Hyper-parameter Value

Lasso
Number of λ’s 100
λMin{λMax 10´4

Maximum iteration 106

PCR
Maximum components 50
Minimum variance ratio 10´6

SVD Solver Full

RF

Number of trees 100
Maximum depth [10,15]
Minimum sample at leaf node 10
Number of features to consider for best split

?
p

Loss function MSE

GBRT

Number of trees 1000
Learning rate [10´1, 10´2, 10´3]
Maximum depth 3
Minimum sample at leaf node 10
Number of features to consider for best split

?
p

Validation fraction 10%
Loss function MSE

NN

Architecture 50 ˆ 10 ˆ 10 ˆ 5
Training batch size 10000
Validation frequency 20
Epoch 100
Learning rate r0.01, 0.003, 0.001, 0.0003, 0.0001s

Patience threshold Npthres 100
Loss function QLike

Table 4: Hyperparameters for Machine Learning Models

Note: This table reports the hyperparameters for the five machine learning models we considered in
the paper, Lasso, Principal Component Regression (PCR), Random Forest (RF), Gradient Boosting
Regression (GBRT), and Neural Network (NN).
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B Appendix: Tables

R2 MSE* QLike*
Model Individual Pooled Individual Pooled Individual Pooled
HAR 0.6833 0.7052 0.4253 0.3962 0.4305 0.3737

MIDAS 0.6907 0.6995 0.4158 0.4039 0.3798 0.3729
SHAR 0.6834 0.7057 0.4252 0.3955 0.4335 0.3735
HARQ 0.6775 0.7187 0.4332 0.3780 0.5024 0.3601
HEXP 0.6693 0.7071 0.4442 0.3936 0.4701 0.3721
OLSRM 0.6734 0.7201 0.4383 0.3761 0.4894 0.3583
OLSRM4 0.6654 0.7202 0.4492 0.3761 0.5145 0.3578
OLSIV 0.4551 0.6096 0.7317 0.5248 0.8039 0.4128
OLSALL 0.5514 0.7276 0.6019 0.3660 0.7744 0.3366

Table 5: Individual vs Pooled Fit, S&P 500 Stocks

R2 MSE* QLike*
Model Individual Pooled Individual Pooled Individual Pooled
HAR 0.6991 0.7849 0.7953 0.5680 6.1815 0.4886

MIDAS 0.7434 0.7815 0.6777 0.5771 0.6883 0.4914
SHAR 0.6992 0.7850 0.7947 0.5678 5.8682 0.4883
HARQ 0.6379 0.7884 0.9581 0.5587 26.9071 0.4864
HEXP 0.6427 0.7863 0.9452 0.5643 22.3139 0.4827
OLSRM 0.6032 0.7897 1.0501 0.5552 32.1466 0.4819
OLSRM4 0.5933 0.7898 1.0762 0.5550 36.0054 0.4817
OLSIV 0.3112 0.5109 1.8256 1.2951 45.2375 1.0282
OLSALL 0.4051 0.7906 1.5765 0.5529 64.0068 0.4758

Table 6: Individual vs Pooled Fit, U.S. Stocks
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Individual MSE Pooled MSE
Model Pre Counts Post Pre Counts Post
HAR 0.5219 1512 0.4265 0.3970 1 0.3970

MIDAS 0.4165 0 0.4165 0.4047 1 0.4047
SHAR 0.5590 1734 0.4264 0.3963 1 0.3963
HARQ 0.8026 5531 0.4342 0.3787 1 0.3787
HEXP 1.4669 11534 0.4452 0.3944 0 0.3944
OLSRM 2.0154 16484 0.4398 0.3768 0 0.3768
OLSRM4 2.0220 16080 0.4506 0.3768 3 0.3768
OLSIV 1.5692 12449 0.7338 0.5257 1 0.5257
OLSALL 1.6653 14150 0.6040 0.3668 2 0.3668
LASSO - - - 0.3668 0 0.3668
PCR - - - 0.3748 1 0.3748
RF - - - 0.3765 0 0.3765

GBRT - - - 0.3948 0 0.3948
NN - - - 0.3607 3 0.3607

Table 7: Insanity Filter, S&P 500 Stocks

This table presents the impact of applying an insanity filter on the out-of-sample forecasting per-
formance within the SP 500 universe. It details the Mean Squared Error (MSE) for each model
before (Pre) and after (Post) applying the insanity filter, alongside the frequency of the filter’s
activation (Counts). The table is organized into two panels: the left panel displays results from
individual fits, while the right panel, due to computational constraints, exclusively shows pooled fits
for the machine learning models. The results demonstrate a significant improvement in the MSE
for individual OLS fits post-filter application, particularly when the filter is frequently triggered,
although this is not the case for MIDAS. Conversely, in the pooled fits, the insanity filter is seldom
triggered, leading to minimal changes in the MSE. Overall, while the insanity filter substantially
enhances the performance of individual fits, these still underperform relative to the pooled fits.
The column indicating the best performance is highlighted in bold for clarity and emphasis.
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Individual MSE Pooled MSE
Model Pre Counts Post Pre Counts Post
HAR 1.3978 54878 0.7985 0.5708 23 0.5708

MIDAS 0.6993 2027 0.6809 0.5798 11 0.5798
SHAR 1.4003 55707 0.7982 0.5706 23 0.5706
HARQ 2.9585 174428 0.9609 0.5615 28 0.5615
HEXP 4.5651 261614 0.9480 0.5670 21 0.5670
OLSRM 7.0873 425734 1.0529 0.5580 36 0.5580
OLSRM4 6.8668 414680 1.0791 0.5579 46 0.5578
OLSIV 8.1848 481612 1.8279 1.2980 0 1.2980
OLSALL 8.0473 501998 1.5788 0.5558 37 0.5557
LASSO - - - 0.5563 23 0.5563
PCR - - - 0.5675 22 0.5675
RF - - - 0.5561 0 0.5561

GBRT - - - 0.5954 0 0.5954
NN - - - 0.5428 11 0.5428

Table 8: Insanity Filter, US Stocks

This table extends the analysis from Table 7, focusing on the forecasting performance for a broader
set of US stocks. We observe a consistent pattern where the insanity filter is triggered more
frequently in individual fits, leading to improved performance. However, a substantial performance
gap remains when compared to the pooled fits. Specifically, for US stocks, the insanity filter is
activated even more frequently in individual fits than in those involving S&P 500 stocks, indicating
heightened sensitivity. In contrast, the pooled fits show robustness, evidenced by fewer trigger
events and minimal changes in the Mean Squared Error (MSE). This stability underscores the
relative performance strength of the pooled models over individual fits in this broader dataset.

Model HAR MIDAS SHAR HARQ HEXP OLSRM OLSRM4 OLSIV OLSALL LASSO PCR RF GBRT
MIDAS -50.2 - - - - - - - - - - - -
SHAR 28.0 55.6 - - - - - - - - - - -
HARQ 135.5 153.6 131.0 - - - - - - - - - -
HEXP 43.5 72.5 28.5 -109.6 - - - - - - - - -
OLSRM 141.6 169.0 142.6 34.5 126.7 - - - - - - - -
OLSRM4 139.9 167.4 140.9 33.2 125.1 1.3 - - - - - - -
OLSIV -27.4 -25.8 -27.6 -31.4 -28.0 -31.8 -31.8 - - - - - -
OLSALL 114.8 145.3 113.4 59.3 107.8 52.1 52.3 34.6 - - - - -
LASSO 112.8 141.4 111.2 56.7 106.3 49.0 48.9 34.6 -1.0 - - - -
PCR 81.8 110.2 79.4 16.1 76.0 8.5 8.4 32.9 -82.8 -95.8 - - -
RF 83.0 112.1 80.0 10.2 72.4 1.4 1.2 32.0 -43.6 -42.1 -6.9 - -

GBRT 4.0 18.0 2.7 -30.5 -0.9 -34.3 -34.4 28.9 -60.3 -61.6 -44.8 -38.9 -
NN 131.2 159.7 129.2 84.1 120.7 74.7 73.7 35.4 28.6 27.2 55.9 87.2 62.5

Table 9: Diebold-Mariano Test, S&P 500 Stocks
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Model HAR MIDAS SHAR HARQ HEXP OLSRM OLSRM4 OLSIV OLSALL LASSO PCR RF GBRT
MIDAS -96.8 - - - - - - - - - - - -
SHAR 19.2 99.6 - - - - - - - - - - -
HARQ 138.8 197.1 137.7 - - - - - - - - - -
HEXP 109.5 145.9 96.4 -75.9 - - - - - - - - -
OLSRM 167.5 242.2 170.8 100.2 125.8 - - - - - - - -
OLSRM4 143.9 218.4 145.1 61.7 106.8 4.4 - - - - - - -
OLSIV -103.9 -102.7 -104.0 -105.4 -104.4 -105.9 -105.9 - - - - - -
OLSALL 156.0 236.7 156.8 89.1 121.3 40.2 55.2 106.5 - - - - -
LASSO 177.5 248.7 178.6 101.6 139.3 38.5 24.2 106.5 -11.7 - - - -
PCR 55.3 119.0 50.4 -66.3 -8.1 -105.6 -95.7 104.8 -124.9 -142.9 - - -
RF 80.6 135.8 79.2 30.0 61.4 10.9 9.5 106.6 -1.9 1.2 63.9 - -

GBRT -41.2 -25.9 -41.5 -56.7 -47.6 -62.6 -62.9 104.7 -67.5 -66.9 -47.7 -72.2 -
NN 197.4 278.7 194.9 134.4 176.5 110.1 108.7 108.1 101.5 107.1 177.8 96.2 88.2

Table 10: Diebold-Mariano Test, U.S. Stocks
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