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Abstract

The seminal paper "Identification of Causal Effects Using Instrumental Variables” by [2]
provides a comprehensive framework for the identification and estimation of causal effects using
instrumental variables (IV) in the presence of endogeneity. This work is pivotal in econometrics
and statistics, offering clarity on the application of IV methods, particularly in observational
studies where randomized experiments are impractical. The paper highlights the formal in-
troduction of the Local Average Treatment Effect (LATE), which details the conditions under
which IV estimates can be interpreted as causal effects for a specific subpopulation defined
by the instrument. This literature review aims to briefly unpack the proposed framework’s

motivation, assumptions, mathematical foundations, and implications.

1 Motivation: Structural Equation Models in Economics

The pursuit of understanding causal relationships, as opposed to mere associative observations,
occupies a central place in the field of econometrics and economics in general. This quest encom-
passes a broad spectrum of inquiries, from evaluating the ramifications of educational attainment on
earnings to dissecting the outcomes of employment training programs on labor market trajectories
and analyzing the influence of inputs on firm outputs. Traditionally, the economics community
has relied on structural equation models, underpinned by instrumental variables (IV), to navigate
through these complex causal effects. For example, the dummy endogenous variable model infers

the effect of veteran status on a health outcome:
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where for person i, Y; is the observed health outcome, D; is the observed treatment (i.e., veteran
status), and Z; is the observed draft status, /31 is the causal effect of D on Y, D* reflects the reality



that compliance is a decision based on weighing the anticipated benefits of serving against those of
not serving (compile or deny).
Notably, the identification of 3; requires two critical assumptions for Z; to be the instrumental

variable (IV) in this example, namely exogeneity and relevance:

E[Z-2]=0, E[Z-v]=0 2)

cov(D;, Z;) #0 (3)

Intuitively speaking, exogeneity assumption (2) means that the instrument should be uncorre-
lated with the error term in the outcome equation, which implies that the instrument affects the
outcome only through its impact on the treatment variable, not through any direct or unobserved
paths. Relevance assumption (3) infers that the instrument must be associated with the treatment
variable, that is, changes in the instrument must lead to changes in the treatment, ensuring that
the instrument has a substantial impact on the exposure of interest.

However, these critical assumptions also turn out to be the reasons why the structural equations
approach is not widely used in the statistics community. First, structural equation models are
critically sensitive to their underlying assumptions and have shown difficulties in replicating experi-
mental findings, raising concerns about their reliability in accurately capturing causal relationships.
Second, the assumptions in structural equation models often rely on abstract disturbances from un-
specified regression functions, making it hard to interpret these models and communicate findings
due to the lack of directly observable variables.

Parallel developments in statistics, particularly the Rubin Causal Model (RCM) based on the
potential outcomes framework, offer a complementary viewpoint [3]. [2] proposes to reconcile these
parallel tracks, thereby enriching the methodological toolbox for causal inference, especially in

scenarios under noncompliance and nonignorable treatment allocation conditions.

2 Framework

2.1 Rubin Causal Model (RCM) N Instrumental Variable (IV)

The Rubin causal model (RCM) provides a rigorous methodology for estimating the population-
level causal effects of treatments or interventions on outcomes by focusing on potential outcomes.
The RCM posits that each unit (e.g., individual, school, district) has a set of potential outcomes
associated with each possible treatment level. The causal effect for a unit is defined as the difference
between the potential outcomes under the treatment and control conditions. However, since only
one of these outcomes can be observed for each unit, the true causal effect for any single unit is

fundamentally unobservable.



2.1.1 Notation

Let Z be the N-dimensional vector of assignments with ¢ th element Z;, and let D;(Z) be an
indicator for whether person ¢ would serve given the randomly allocated vector of draft assignments
Z. Both Z and D take binary values, that is, there is no partial compliance. [2] defines the causal

effect for individual 7 of Z on D as
Di(1) — Dy(0)

and the causal effect of Z on Y as
Y; (1, Di(1)) — Y3 (0, Di(0))
and the causal effect of D on Y as
Yi(1) - Yi(0)
We focus on average causal effects in groups of people who can be induced to change treatments.
Inferences about such average causal effects are made using changes in treatment status induced by
treatment assignment, provided the assignment does affect the treatment.

2.1.2 Assumptions

The formal definition of an instrument in the RCM needs 5 assumptions:

1. Stable Unit Treatment Value Assumption (SUTVA) [4]:

e If Z; = Z!, then D;(Z) = D; (Z').
e If Z;= 7! and D; = D/, then Y;(Z,D) = Y; (Z', D).

2. Random Assignment: The treatment assignment Z; is random Pr(Z = ¢) = Pr (Z = ¢’) for all
c and ¢ such that "¢ = /7¢’, where ¢ is the N dimensional column vector with all elements

equal to one:
3. Exclusion Restriction: Y(Z,D) =Y (Z',D) for all Z,Z’ and for all D.

4. Nonzero Average Causal Effect of Z on D: The average causal effect of Z on D, E'[D;(1) — D;(0)]

is not equal to zero.

5. Monotonicity [1]: D;(1) > D;(0) for alli=1,..., N.

2.2 Local Average Treatment Effect (LATE)

Under SUTVA and Exclusion Restriction assumptions, the causal effect of Z on Y for person i is

the product of the causal effect of D on Y and the causal effect of Z on D:



Yi (1, Di(1)) = Yi (0, Di(0))
Yi (Di(1)) = Y; (Di(0))
= [Yi(1) - Di(1) + Y3(0) - (1 = Ds(1))] = [Yi(1) - Ds(0) + Y3(0) - (1 = Di(0))]
= (Yi(1) = Yi(0)) - (Ds(1) — Di(0))
As a consequence, in addition to the monotonicity assumption, we can write the average causal
effect of Z on Y as:

E[Y; (Di(1),1) = Yi (D;(0),0)] = E[(Yi(1) = Yi(0)) | Di(1) — Di(0) = 1]-P [D;(1) — Di(0) = 1] (4)

Accordingly, the concept of the Local Average Treatment Effect (LATE) is introduced to es-
tablish the relationship between the IV estimand and the causal effect of D on Y. Under the

aforementioned assumptions, the LATE as the instrumental variables estimand is defined as:

ETY; (D(1),1) = Y; (Di(0),0)]
E[D;(1) — D;(0)]

Note that the monotonicity assumption implies that £ [D;(1) — D;(0)] equals P [D;(1) — D;(0) = 1],

and the nonzero average causal effect assumption implies that E [D;(1) — D;(0] differs from zero.

LATE =

= E[(Yi(1) = Yi(0)) [ Di(1) — Di(0) = 1] (5)

(5) targets a more specific estimate of causal effects compared to what is typically derived from
traditional analyses, focusing on the subgroup of individuals who comply with their treatment
assignment due to an instrumental variable. This group, known as compliers, consists of those
whose treatment status is directly influenced by the IV, allowing for a clear delineation of causality

in situations where not all participants adhere to their assigned treatment.

3 Discussion

[2] has broad implications for empirical research, particularly in economics and social sciences, where
endogeneity and unobservable variables frequently bias causal estimates. The paper elucidates how
IV methods, under the LATE framework, can provide more accurate and interpretable estimates
of causal effects, emphasizing the importance of carefully selecting and justifying instrumental
variables.

The work of [2] has profoundly influenced the field of econometrics and beyond, offering a robust
framework for addressing endogeneity through instrumental variables. By introducing and formaliz-
ing the concept of the Local Average Treatment Effect (LATE), they provide a clearer interpretation
of IV estimates, contributing to more accurate and reliable causal inference in observational stud-
ies. [2] remains a cornerstone in the methodology of causal inference, guiding researchers in the

application and interpretation of instrumental variable techniques.
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