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1 Introduction

1.1 Background in Financial Economics

In the evolving landscape of financial economics, understanding the dynamics and limitations of
arbitrage has been a central pursuit, providing insights into the fundamental principles that govern
financial markets ([9], [10], [6], [4]). [1] navigates the intriguing boundary where financial economet-
rics meets the practical challenges faced by arbitrageurs in real markets. It delves into the critical
premise underlying most asset pricing theories, notably the Arbitrage Pricing Theory (APT), which
posits that investment opportunities offering disproportionately high rewards relative to risk – es-
sentially, near-arbitrage opportunities –should not persist in an efficient market. The rationale is
straightforward: such opportunities, if existed, would be rapidly exploited by arbitrageurs, leading
to their elimination. However, a significant departure from this theoretical ideal is the acknowledg-
ment of the arbitrageurs’ real-world predicament – a lack of precise knowledge of the data-generating
process (DGP) for returns, compelling them to rely on a statistical analysis of historical data to
identify potential arbitrage opportunities. This reliance introduces a layer of statistical uncertainty,
particularly pronounced in the noisy and high-dimensional world of stock returns, which establishes
a “statistical limit” to arbitrage.

From a statistical perspective, [1] scrutinizes a classic topic within asset pricing, arbitrage pric-
ing theory (APT), and introduces a statistical arbitrage strategy inspired by the non-parametric
empirical Bayes framework. This strategy optimizes portfolio weights in proportion to the posterior
mean of pricing errors (alpha), aiming for optimal economic performance – a method that resonates
with the classical normal mean problem discussed in [8]. The introduction outlines the transition
from the theoretical construct, where arbitrage opportunities are swiftly leveraged by arbitrageurs
endowed with perfect knowledge, to the empirical reality, marked by their struggle against the back-
drop of statistical uncertainty. This conceptual shift not only lays the groundwork for reevaluating
the bounds within which alphas can exist in equilibrium – broadening them compared to the tra-
ditional APT assumptions – but also heralds a nuanced approach that integrates empirical Bayes
methods to refine these estimates, thereby offering a novel perspective on the statistical constraints
that shape arbitrage strategies in financial markets.



1.2 Linear Factor Model Setup

[1] considers a setting in which returns follow a general linear factor model (we can think of it as
the hypothetical return DGP)

rt = α + βγ + βvt + ut (1)

where N is the number of assets, K is the number of risk factors, T is the sample size e.g. in
months, rt denotes the N × 1 vector of excess returns, β is an N × K matrix of factor exposures,
α is an N × 1 vector of pricing errors (the component of returns not explained by the risk factors,
which are our target of interest), vt is a K × 1 vector of factor innovations (unexpected changes in
the risk factors) with covariance matrix Σv, γ is a K× 1 vector of risk premia (the returns expected
from bearing each unit of risk associated with the factors), and ut is a vector of idiosyncratic returns
(the asset-specific risks not captured by the common factors), independent of vt with a diagonal
covariance matrix Σu.

More specifically, the alphas represent potential arbitrage opportunities, as they signify returns
in excess of what is predicted by exposure to the common risk factors. In an efficient market, we
would expect these alphas to be zero, as any predictable, systematic returns above the risk premia
would be quickly exploited by arbitrageurs, driving prices to adjust and eliminate the discrepancy.
However, the presence of alpha signals, even if small and sparse, indicates the existence of statistical
arbitrage opportunities.

1.3 Feasible Near-Arbitrage Opportunities

To better distinguish between (economic) theory and (statistical) reality, we first briefly introduce
the concept of rational expectations hypothesis in economics [7]. The idea of rational expecta-
tions refers to the assumption that economic agents, including investors and arbitrageurs, use all
available information efficiently and correctly to forecast future events. In the context of financial
markets, this means that arbitrageurs would have perfect knowledge of the DGP for asset returns,
enabling them to accurately predict α and exploit any arbitrage opportunities that arise. The ra-
tional expectations framework assumes that markets are efficient, with prices reflecting all available
information, and thus, no systematic and exploitable arbitrage opportunities should exist because
they would be immediately corrected by the market participants’ actions.

However, the scenario outlined in [1] diverges from what rational expectations would imply, par-
ticularly regarding the asymptotic limit of alpha. In this paper’s setting, arbitrageurs do not possess
perfect knowledge of the return-generating process. Instead, they must rely on historical data to
learn about potential alphas, which introduces statistical uncertainty into the process. This uncer-
tainty arises from the challenge of estimating the true alpha values in a noisy and high-dimensional
environment, where the number of assets (N) and the sample size (T ) affect the precision of these
estimates.
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The presence of statistical uncertainty means that even if alphas exist, arbitrageurs might not
be able to detect and exploit them reliably. This leads to a “statistical limit” to arbitrage, where the
feasibility of identifying and leveraging arbitrage opportunities is constrained by the arbitrageurs’
inability to perfectly learn the true alphas from historical data. Consequently, the asymptotic
limit of alpha in this scenario is different from what rational expectations would imply because
it acknowledges the practical limitations faced by arbitrageurs, including incomplete information,
model misspecification risks, and the impact of learning under uncertainty. These factors can result
in mispricings persisting in equilibrium, contrary to the rational expectations model, where such
mispricings would be swiftly eliminated by fully informed market participants.

Therefore, we say a strategy is feasible if the portfolio weights/allocation only uses observable
data, that is, a feasible strategy at t needs to be adapted to the filtration (information set) generated
by a function of observables from t − T + 1 to t. Furthermore, [1] formalizes the concept of
near-arbitrage in a more general setting: A portfolio strategy w at time t is said to generate a
near-arbitrage under a sequence of data-generating processes, such as (1), defined in a filtered
probability space

(
Ω,F , {Ft}t≥0 ,P

)
, if it satisfies w ∈ Ft, and along some diverging sub-sequence,

with probability approaching one,

Var
(
w⊤rt+1 | Ft

)
→ 0, E

(
w⊤rt+1 | Ft

)
≥ δ > 0. (2)

Intuitively, no near-arbitrage means there exists no sequence of portfolios that could obtain
positive expected returns with vanishing risks.

2 Connection with Empirical Bayes

2.1 The Optimal Feasible Sharpe Ratio and Weight

To draw the connection between the optimal feasible portfolio and empirical Bayes method, es-
pecially the empirical Bayes estimator based on Tweedie’s formula ([8]), [1] first shows that any
feasible portfolio weight ŵ has a Sharpe ratio upper bound S(G) with

S(G) =
√

E[α|G]T Σ−1
u E[α|G] (3)

where G = {(rs, β, vs,Σu)) : t − T + 1 ≤ s ≤ t} denotes the information available at t for the past
T timestamps. Recall that a “feasible” portfolio weight ŵ can only use information in G without
having access to the DGP.

It is shown by [5] that the optimal feasible portfolio weight with Sharpe ratio reaching S(G) is
w∗ = MβΣ−1

u E[α|G] where Mβ is the projection (“hat”) matrix Mβ = IN − β(βTβ)−1βT . There-
fore, to construct a portfolio with weights close to w∗, we need to figure out how to evaluate the
expectation E[α|G].
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2.2 Additional Assumptions and Normal Means Model

In order to obtain a better characterization of E[α|G], the paper imposes two additional assumptions
on the model:

(a) si := αi

σi
is independent of σi and satisfies E

(
s2

i 1{|si|≥cN }
)

≤ cN−1 for some sequence cN → 0.

(b) εi,t follows a standard normal distribution.

Based on the assumptions, we first notice that α̂, i.e. the estimated α by regressing on G, satisfies
α̂i/σi ∼ N(si, 1)1. Conditioning on σ2

i and assuming si ∼ G from some unknown prior G, the
setting resembles the normal means problem encountered in empirical Bayes problems.

To be more concrete, we now can rewrite

E[αi|G] = E[αi|α̂i, σ
2] = σiE[si|z̃i] (4)

where in the first step, our earlier assumptions make sure that α̂i, σ
2 are sufficient in summarizing

information from G. We then define z̃i =
√
T ( α̂i

σi
) to further refine the dependence. It is easy to see

that z̃i ∼ N(
√
Tsi, 1) and we are ready to tackle the posterior expectation E[si|z̃i] using Tweedie’s

formula.

2.3 Tweedie Formula and Construction of Optimal Portfolio

Recall that, in general, if the parameter µ ∼ G for some unknown prior G, and the observation has
likelihood z|µ ∼ N(µ, 1), the Gaussian version of the Tweedie’s formula ([2]) gives us

E[µ|z] = z + d

dz
log fG(z) (5)

where fG(z) is the marginal of z that depends on prior G. In our setting, we thus have

E[si|z̃i] = ψ(z̃i) = 1√
T
z̃i + 1√

T

d

dz
log p(z̃i) (6)

Since the prior on si is unknown, we instead take an empirical Bayes approach to estimate the
marginal p(z̃i) by Gaussian kernel density estimation:

p̂(a) = 1
NkN

∑
i

ϕ

(
ẑi − a

kN

)
(7)

1we originally have α̂i = αi + ū, then independence between si and σi as well as normality of ϵi,t gives the result.
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where kN = (logN)−1 is the bandwidth and ϕ is the standard normal pdf. Plugging in p̂ and adding
some correction factors, we have

E[si|z̃i] ≈ ψ̂(z̃i) = 1√
T
z̃i + 1 + k2

N√
T

d

dz
log p̂(z̃i) (8)

Finally, taking the estimator back to the optimal feasible portfolio weight in 2.1, we can construct
a portfolio weight (that approximates the optimal weight) with

ŵOP T = MβΣ−1
u ψ̂(z̃i) = Mβw̆ (9)

where each entry w̆i = ψ̂(z̃i)/σ̂i (notice that here we estimate σ̂i as a plug-in for σi. This makes the
above construction “all-weather” even when the signal strength is unknown).

3 Main Findings

3.1 Optimality of the proposed algorithm

This section assumes that the true β is known. The proposed estimator makes heuristic sense:
when we know the true alphas, the optimal portfolio weight is MβΣ−1

u α, where the “hat” matrix
Mβ eliminates the systematic risk exposure. When the true α is not observed, the posterior mean

wOPT = MβΣ−1
u E[α|G] (10)

achieves the best feasible Sharpe ratio given the data generation procedure. The proposed esti-
mator is a finite sample version of wOPT, which produces a Sharpe ratio that is close to SOP T , as
summarized in theorem 2. Below is a brief rephrase of the theorem:

Theorem. Suppose T ∼ Nd with d ∈ (1
2 , 1). Denote ŜOP T as the one-step-ahead Sharpe ratio

generated by algorithm 1. Under the assumptions on DGP and the factor model,

lim
T,N→∞

sup
P ∈P

P(|SOP T − ŜOP T | ≥ ϵSOP T + ϵ) = 0 (11)

This says that the absolute deviation between ŜOP T and SOP T shrinks below any fraction or
constant threshold, whichever dominates, in the limit.

3.2 Benchmark algorithms

The author discussed the dominance of the proposed algorithm above three alternative approaches
A ∈ {cross-sectional regression (CSR), false discovery rate control (B-H), shrinkage (LASSO)} by
deriving their closed-forms Sharpe ratio SA under the setting of Example 1 and a few additional
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simplifying assumptions. Cross-sectional regression uses α̂ = (βTβ)−1βT r̄ and the plug in estimator
wCSR = MβΣ̂−1

u α̂. This strategy is strongly dominated (i.e., SCSR

SOP T is small) by our empirical Bayes
approach when the signal is strong (in example 1, that means µ

σ
is large) but sparse (ρ is small).

On top of the CSR, the false discovery rate control method selects assets with alphas that reject
the null with Bonferroni’s correction. We split the data set into S and S ′: on S, we filter out the
assets with weak signals, while on S ′, we fit α and w on those remaining assets and assign 0 weight
to filtered-out assets. This procedure is overly conservative and performs worse than CSR when the
signal is weak, suggesting that simply ignoring weak signals is sub-optimal. The shrinkage approach
uses a penalization pλ(w), which (softly) filters weak signals when p uses a 1-norm (LASSO) and is
a proportional shrinkage when p uses a 2-norm (ridge). Ridge is equivalent to CSR under the given
settings, and using an optimal (infeasible) λ, LASSO performs almost as well as empirical Bayes
for most of the ρ and µ

σ
.

3.3 Simulations Evidence and Empirical Analysis

The author simulated the path rt under a one-factor CAPM model under the setting of example
(1) in the paper [3]. The proposed algorithm uses a bandwidth KN when estimating the marginal
density of the t-statistics. For three different values of KN , the author simulated ŜOP T . The
realized Sharpe ratio is also simulated for the three benchmark approaches. For each choice of
(ρ, µ/σ), compute the error

ErrA
(
ρ,
µ

σ

)
= |ŜA − SOP T |

1 + SOP T
(12)

for each of the algorithms A ∈ {CSR, B-H, LASSO, OPT}. The author reported the maximal error
over all (ρ, µ

σ
). The proposed empirical Bayes estimate has the smallest error in almost all cases.

The author conducted an empirical analysis of US equities. A multi-factor model with 16
characteristics and 11 GICS is employed, where the factors are selected based on literature. The
author evaluated the model performance by plotting the cross-sectionalR2. The averageR2 is 8.25%,
which is rather low, suggesting that the estimation of α is hard. In addition, the author collected
the averaged residuals as alphas to investigate the strength and rarity arbitrage opportunities. It
turns out that the t-statistics is usually low (only 6.35% exceeding 2.0), and that the magnitude
of the largest alpha is modest (at 1.699). This says that rare and weak alpha is the most common
scenario.

The realized Sharpe ratio is simulated by recalculating the weight at the end of each month
using a 10-year rolling window of returns. The four strategies yield a similar Sharpe ratio, with
B-H and OPT slightly higher (at around 0.5).
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