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1 Large-Scale and High-Dimension: Computational Challenges
Markov Chain Monte Carlo (MCMC) methods have long been a cornerstone of

statistical inference, providing a principled mechanism to draw samples from complex,
high-dimensional distributions. These techniques are particularly essential in the
context of Bayesian statistics, where the posterior distribution of model parameters
is approximated by sampling. Despite their versatility and theoretical guarantees,
traditional MCMC methods face significant computational challenges when applied to
large-scale, high-dimensional problems, such as those encountered in Bayesian deep
learning. These challenges primarily stem from the need to compute and manipulate
full-gradient information, engendering a high computational cost that scales unfavorably
with the size of the dataset and the dimensionality of the model.

In large-scale problems, the posterior distribution is typically proportional to the
product of a likelihood term (which depends on the entire dataset) and a prior term.
Consequently, computing the gradient requires summing over all data points, resulting
in an operation that scales linearly with the size of the dataset. For modern applications
involving millions or even billions of data points, this requirement can render traditional
MCMC methods computationally infeasible.

Additionally, the efficiency of MCMC methods is often hampered by the curse of
dimensionality. As the dimensionality of the parameter space increases, the volume of
the space grows exponentially, leading to increasingly sparse and inefficient sampling.
Moreover, traditional MCMC methods typically rely on global proposal distributions
that do not adapt to the local geometry of the target distribution, which can result
in slow mixing and poor exploration of the parameter space in high dimensions. This
problem is exacerbated in the context of Bayesian deep learning, where models can have
millions of parameters.

Stochastic Gradient Markov Chain Monte Carlo (SG-MCMC) methods have been de-
veloped to respond to these challenges. By leveraging stochastic optimization techniques,
SG-MCMC methods replace the exact gradient computations of traditional MCMC with
noisy estimates based on mini-batches of data. This modification significantly reduces
the computational cost per iteration and makes it possible to apply MCMC methods to
large-scale problems. Furthermore, specific SG-MCMC methods incorporate adaptive
proposal mechanisms that account for the local geometry of the target distribution,
thereby mitigating the issues associated with high-dimensional sampling. Therefore,
SG-MCMC methods, by tackling the computational challenges of traditional MCMC,
have emerged as a promising avenue for scalable Bayesian inference in the era of big
data and high-dimensional modeling.
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2 Preliminaries: Two Components
In the context of Bayesian statistics, let 𝜃 denote a parameter vector with prior

𝑝(𝜃) and data likelihood 𝑝(𝑥|𝜃). The posterior distribution of a set of 𝑁 observed data
points 𝑋 = {𝑥𝑖}𝑁𝑖=1 is

𝑝(𝜃|𝑋) ∝ 𝑝(𝜃)
𝑁∏︁

𝑖=1
𝑝(𝑥𝑖|𝜃)

2.1 Stochastic Gradient Descent(SGD)

Stochastic Gradient Descent (SGD) is a popular optimization algorithm used in
machine learning and deep learning for training models. Unlike standard Gradient
Descent which computes the gradient using the entire dataset, SGD estimates the
gradient using a single or a few randomly selected samples called mini-batch as a
stochastic approximation, thereby making it more computationally efficient for large
datasets.

Suppose our task is to find the maximum a posteriori (MAP) estimator 𝜃* of the
true parameter 𝜃. In SGD, given a subset of 𝑛 data points 𝑋𝑡 = {𝑥𝑡1, ..., 𝑥𝑡𝑛}, the
iterative process of updating parameters at each iteration 𝑡 is performed as follows:

Δ𝜃𝑡 = 𝜖𝑡

2

(︃
∇ log 𝑝(𝜃𝑡) + 𝑁

𝑛

𝑛∑︁
𝑖=1
∇ log 𝑝(𝑥𝑡𝑖 | 𝜃𝑡)

)︃

The process is repeated for each minibatch until a stopping criterion is met. The
key idea here is that: over multiple iterations the whole dataset is used and the noise in
the gradient caused by using subsets rather than the whole dataset averages out.

2.2 Continuous Dynamics

Continuous dynamics leverage physical system simulations to propose future states
in the Markov chain. Suppose we want to sample from the posterior distribution of 𝜃 in
the form of

𝑝(𝜃|𝑋) ∝ exp(−𝑈(𝜃))

where
𝑈(𝜃) = −

∑︁
𝑥

log 𝑝(𝑥|𝜃)− log 𝑝(𝜃)

is called the potential energy function. We think of the posterior distribution as
an energy landscape, and we would like to use continuous dynamics to explore such
landscape as much as possible.

We will introduce two common dynamics, Hamiltonian and Langevin dynamics, as
well as the corresponding sampling algorithms.
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2.2.1 Hamiltonian Dynamics and Hamiltonian Monte Carlo (HMC)

Hamiltonian dynamics model the parameter space as a physical system, where the
probability distribution corresponds to the potential energy and parameters move like
particles with kinetic energy. The dynamics simulate the physical motion of an object
with position 𝜃, momentum 𝑟, and mass M on a frictionless surface, which can be
mathematically formulated as a system of ordinary differential equations (ODEs):{︃

𝑑𝜃 = 𝑀−1𝑟𝑑𝑡

𝑑𝑟 = −∇𝑈(𝜃)𝑑𝑡

Hamiltonian Monte Carlo (HMC) adds an auxiliary momentum variable 𝑟 to augment
the target posterior distribution of 𝜃 to be

𝜋(𝜃, 𝑟) ∝ exp(−𝑈(𝜃)− 1
2𝑟𝑇 𝑀−1𝑟 = exp(−𝐻(𝜃, 𝑟))

where 𝐻(𝜃, 𝑟) = 𝑈(𝜃) + 𝐾(𝑟) is called Hamiltonian or total energy, which is ideally
conserved i.e. walking around a given level set of the energy landscape.

To achieve ergodicity, we resample the momentum variable to explore across different
level sets for representative sampling. In practice, however, we cannot simulate exactly
from the continuous system, so we need to do discretization of Hamilton equations
by leveraging numerical integrators such as the Leapfrog method, which inevitably
introduces some discretization errors. Nevertheless, an accept/reject mechanism like
Metropolis-Hasting will correct such errors to leave the target distribution invariant.

Algorithm 2.1 Hamiltonian Monte Carlo (HMC)
Input: Starting position 𝜃(1) and step size 𝜖
for 𝑡← 1, . . . , 𝑁 do

# Momentum Refreshment
𝑟(𝑡) ∼ 𝑁(0, 𝑀)
# Leapfrog Discretization
𝑟0 ← 𝑟0 − 𝜖

2∇𝑈(𝜃0)
for 𝑖← 1, ..., 𝑚 do

𝜃𝑖 ← 𝜃𝑖−1) + 𝜖𝑀−1𝑟𝑖−1
𝑟𝑖 ← 𝑟𝑖−1 − 𝜖∇𝑈(𝜃𝑖)

end for
𝑟𝑚 ← 𝑟𝑚 − 𝜖

2∇𝑈(𝜃𝑚)
(𝜃*, 𝑟*)← (𝜃𝑚, 𝑟𝑚)
# Metropolis-Hastings correction

Set
(︁
𝜃(𝑡+1), 𝑟(𝑡+1)

)︁
=

⎧⎨⎩ (𝜃*, 𝑟*) w.p. min
{︁

1, 𝑒𝐻(𝜃(𝑡),𝑟(𝑡))−𝐻(𝜃*,𝑟*)
}︁(︁

𝜃(𝑡),−𝑟(𝑡)
)︁
w.p. 1−min

{︁
1, 𝑒𝐻(𝜃(𝑡),𝑟(𝑡))−𝐻(𝜃*,𝑟*)

}︁
end for
Output: Samples 𝜃(1), . . . , 𝜃(𝑁)
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2.2.2 Langevin Dynamics and Langevin Monte Carlo (MALA)

Langevin dynamics introduces friction and random noise into the system’s dynamics,
which dissipates energy and injects stochasticity, respectively. The Langevin diffusion is
defined by the stochastic differential equation (SDE):

𝑑𝜃 = −1
2∇𝑈(𝜃)𝑑𝑡 + 𝑑𝐵𝑡

where ∇𝑈(𝜃) is the drift term and 𝐵𝑡 denotes 𝑑-dimensional Brownian motion.
Over infinitesimally small time intervals 𝜖 > 0, the Langevin diffusion has approximate
dynamics given by

𝜃𝑡+ℎ ≈ 𝜃𝑡 −
𝜖

2∇𝑈(𝜃𝑡) +
√

ℎ𝑍

where 𝑍 is a vector of 𝑑 independent standard Gaussian random variables.
This zoom-in approximation perspective also motivates us how to discretize the

continuous Langevin dynamics whose equilibrium distribution is the target posterior
distribution 𝑝(𝜃|𝑋) ∝ exp(−𝑈(𝜃)) ∝ 𝑝(𝜃)∏︀𝑁

𝑖=1 𝑝(𝑥𝑖|𝜃), by taking gradient steps and
injecting Gaussian noise into the parameter updates. Here’s the update procedure:

Δ𝜃𝑡 = 𝜖

2

(︃
∇ log 𝑝(𝜃𝑡) +

𝑁∑︁
𝑖=1
∇ log 𝑝(𝑥𝑖 | 𝜃𝑡)

)︃
+ 𝜂𝑡

where 𝜂𝑡 ∼ 𝑁(0, 𝜖)

Algorithm 2.2 Metropolis-Adjusted Langevin Algorithm (MALA)
Input: Starting position 𝜃(1) and step size 𝜖
for 𝑡← 1, . . . , 𝑁 do

# Gaussian Noise Generation
𝑟(𝑡) ∼ 𝑁(0, 1)
# Proposal Calculation
𝜃* ← 𝜃(𝑡) + 𝜖2

2 ∇𝑈(𝜃(𝑡)) + 𝜖𝑟(𝑡)

# Metropolis-Hastings correction
Accept 𝜃(𝑡+1) = 𝜃* with probability min

{︁
1, 𝑝(𝜃*)𝑞(𝜃(𝑡)|𝜃*)

𝑝(𝜃(𝑡))𝑞(𝜃*|𝜃(𝑡))

}︁
where 𝑞(𝜃, 𝜃′) = 𝑁

(︁
𝜃′; 𝜃 + 𝜖2

2 ∇𝑈(𝜃), 𝜖2𝐼
)︁

Otherwise set 𝜃(𝑡+1) = 𝜃(𝑡)

end for
Output: Samples 𝜃(1), . . . , 𝜃(𝑁)

Langevin Monte Carlo (LMC), also known as the Metropolis-adjusted Langevin
algorithm (MALA), uses a combination of Langevin dynamics and accept/reject mecha-
nism to generate the states of a random walk that makes target posterior distribution
invariant. Here’s an intuitive breakdown of each step:
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• Langevin dynamics employ gradient flow of the target to propose new states, driv-
ing the random walk towards regions of high probability (first-order information).

• Metropolis-Hastings decides to accept/reject the proposals from the dynamics
by evaluating the target probability density for better mixing and convergence
(zero-order information).

3 Connecting Dynamics with SGD: SG-MCMC
3.1 Framework

The general idea is to transform the posterior sampling process into the simulation of
a continuous dynamic system, which is utilized to establish a Markov transition kernel.
Generically speaking, all continuous Markov processes we have known for sampling
can be written as a stochastic differential equation (SDE) specified by two matrices, a
positive semi-definite diffusion matrix D and a skew-symmetric curl matrix Q. The
SDE is of the form

𝑑z = 𝑓(z)𝑑𝑡 +
√︁

2𝐷(z)𝑑𝑊 (𝑡)
where z can represent either the target parameter 𝜃 itself, or the augmented state

space with auxiliary variables (𝜃, 𝑟). 𝑊 (𝑡) denotes a 𝑑-dimensional Wiener process, and
𝑓(z) denotes the deterministic drift term written in terms of the target distribution

𝑓(z) = −[𝐷(z) + 𝑄(z)]∇𝐻(z) + Γ(z), Γ𝑖(z) =
𝑑∑︁

𝑗=1

𝜕

𝜕z𝑗
(𝐷𝑖𝑗(z) + 𝑄𝑖𝑗(z))

[10] proves this framework as complete in two folds:

• Given any positive semi-definite diffusion 𝐷(z) and skew-symmetric curl 𝑄(z),
define a stochastic dynamic system using these two matrices, then this system
will have a unique stationary distribution.

• Given a divergence-free vector field characterizing a stationary distribution, there
exists a skew-symmetric curl matrix 𝑄(z) and a positive semi-definite diffusion
matrix 𝐷(z) such that the resulting stochastic system has the given vector field
as its stationary distribution.

Under this framework, like HMC, we consider an 𝜖-discretization of the continuous
dynamics expressed by the above SDE with full-data update first:

Δ(zt) = −𝜖𝑡[(𝐷(z𝑡) + 𝑄(z𝑡))∇𝐻(z𝑡) + Γ(z𝑡)] +𝒩 (0, 2𝜖𝑡𝐷(z𝑡))
Then, we connect such discretized dynamics with the spirit of SGD, which is replacing

the full gradient evaluation with stochastic gradient

̃︀𝑈(𝜃) = −|𝒮|
| ̃︀𝒮|

∑︁
x∈̃︀𝒮 log 𝑝(x | 𝜃)− log 𝑝(𝜃); ̃︀𝒮 ⊂ 𝒮
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where ̃︀𝒮 are subsets i.e. mini-batches of the full dataset 𝒮.
This stochastic gradient estimator of the full data gradient is noisy but unbiased.

However, a corresponding concern is: whether the corresponding stochastic noise using̃︀𝑈 will lose the invariance of target distribution in the new dynamics. If not, how to
offset such a negative effect to keep the target invariant?

It turns out that if we further assume

∇ ̃︀𝑈(𝜃) = ∇𝑈(𝜃) +𝒩 (0, V(𝜃))

and by employing CLT, we can get a noisy version of the Hamiltonian gradient

∇ ̃︀𝐻(z) = ∇𝐻(z) + [𝒩 (0, V(𝜃)), 0]𝑇

Then, we achieve a general version of the discretized dynamics using the stochastic
Hamiltonian gradient as our update rule:

z𝑡+1 = z𝑡 − 𝜖𝑡

[︁
(𝐷(z𝑡) + 𝑄(z𝑡))∇ ̃︀𝐻(z𝑡) + Γ(z𝑡)

]︁
+𝒩

(︁
0, 𝜖𝑡

(︁
2𝐷(z𝑡)− 𝜖𝑡

̂︀𝐵𝑡

)︁)︁
where ̂︀𝐵𝑡 is an estimate of Gaussian noise variance V(𝜃).
Therefore, as 𝜖𝑡 → 0, that is, in an infinitesimal step size, the full-data update yields

the correct invariant distribution, and our stochastic update approaches to the full-data
update. Thus, our stochastic update leaves the target distribution invariant as 𝜖𝑡 → 0
as well. Note that this argument is only for intuitive understanding. Due to the page
limit, see [10] for formal mathematical proofs.
3.2 Algorithms/ Samplers

Here, we illustrate how to apply such a complete framework to the actual samplers
by specifying diffusion 𝐷(z), curl 𝑄(z), and 𝐻(z).
3.2.1 Stochastic Gradient Langevin Dynamics(SGLD)

SGLD follows first-order Langevin dynamics to generate samples by

𝜃𝑡+1 ← 𝜃𝑡 − 𝜖𝑡𝐷∇𝑈̃(𝜃𝑡) +𝒩 (0, 2𝜖𝑡𝐷)

Unlike HMC, we don’t have the auxiliary momentum variable in SGLD. This update
rule corresponds to z = 𝜃, 𝐻(𝜃) = 𝑈(𝜃), 𝐷(𝜃) = 𝐷, 𝑄(𝜃) = 0, ̂︀𝐵𝑡 = 0.
3.2.2 Stochastic Gradient Riemann Langevin Dynamics(SGRLD)

In SGLD, the diffusion matrix 𝐷(𝜃) = 𝐷 is deterministic i.e. independent of 𝜃,
which motivates the following generalization of SGLD by using an adaptive diffusion
matrix 𝐷(𝜃) = 𝐺−1(𝜃) where 𝐺(𝜃) is the Fisher information matrix. The update rule is

𝜃𝑡+1 ← 𝜃𝑡 − 𝜖𝑡

[︁
𝐺(𝜃𝑡)−1∇ ̃︀𝑈(𝜃𝑡) + Γ(𝜃𝑡)

]︁
+𝒩

(︁
0, 2𝜖𝑡𝐺(𝜃𝑡)−1

)︁
corresponding to 𝐷(𝜃) = 𝐺−1(𝜃), 𝑄(𝜃) = 0, ̂︀𝐵𝑡 = 0, Γ𝑖(𝜃) = ∑︀

𝑗
𝜕𝐷𝑖𝑗(𝜃)

𝜕𝜃𝑗
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3.2.3 Stochastic Gradient Hamiltonian Monte Carlo(SGHMC)

The naive update rule is by replacing the full gradient ∇𝑈(𝜃) with the stochastic
gradient ∇̃︀(𝑈(𝜃)) as we previously showed{︃

𝜃𝑡+1 ← 𝜃𝑡 + 𝜖𝑡𝑀
−1𝑟𝑡

𝑟𝑡+1 ← 𝑟𝑡 − 𝜖𝑡∇ ̃︀𝑈(𝜃𝑡) ≈ 𝑟𝑡 − 𝜖𝑡∇𝑈(𝜃𝑡) +𝒩
(︀
0, 𝜖2

𝑡 𝑉 (𝜃𝑡)
)︀

However, this update rule doesn’t converge to the target stationary distribution.
The correct version is by adding a friction term and employing second-order Langevin
dynamics ⎧⎨⎩𝜃𝑡+1 ← 𝜃𝑡 + 𝜖𝑡𝑀

−1𝑟𝑡

𝑟𝑡+1 ← 𝑟𝑡 − 𝜖𝑡∇ ̃︀𝑈(𝜃𝑡)− 𝜖𝑡𝐶𝑀−1𝑟𝑡 +𝒩
(︁
0, 𝜖𝑡

(︁
2𝐶 − 𝜖𝑡

̂︀𝐵𝑡

)︁)︁
where 𝑧 = (𝜃, 𝑟), 𝐻(𝜃, 𝑟) = 𝑈(𝜃) + 1

2𝑟𝑇 𝑀−1𝑟, Q(𝜃, 𝑟) =
(︃

0 −I
I 0

)︃
, D(𝜃, 𝑟) =(︃

0 0
0 C

)︃

4 Experiments
We compare the sampling performance of SGLD, SGRLD, and SGHMC on the

2-D multimodal problem, with 1/2/3/4 modes under Gaussian settings. Each scenario
simulates 10000 samples with the same learning rate 𝜂 = 0.1 for all 3 methods, and
different choices of correlation values are considered for comparison. Under the same
multimodal problem (i.e. fixed number of modes), we choose the same initialization
point for all 3 methods where the probability density is relatively low. We also compare
the stochastic methods with HMC in the unimodal case. HMC is particularly slow ( 10
minutes for 10000 iterations) even in the unimodal case possibly due to the accept/reject
scheme i.e. Metropolis-Hastings, so we then compare the stochastic gradient methods
with the samples from the true density distribution for multimodal settings.
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Figure 1 A distant initial point (-10,0) is set on purpose. HMC jumps to the right region
in one step, but all stochastic gradient methods need to take multiple steps to reach the
desired landscape. SGHMC is particularly worse than the other two, but all methods fully
explore the distribution.

Figure 2 Initial point (10,0) is set at a low-density area on purpose. All SG-MCMC samples
explore the level set corresponding to the initial point quite well but don’t fully exploit
the high-density area around (0,0).
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Figure 3 All SG-MCMC samples explore the triangle shape quite well, covering all parts of
the density area.

Figure 4 In the isolated scenario, a zero-density initial point (5,5) is set on purpose.
Unsurprisingly, all SG-MCMC methods are trapped in a single Gaussian region and didn’t
explore the other three at all. Interestingly, they all choose the upper-right region, possibly
due to similar dynamics behavior.
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5 Discussion and Bibliography
Stochastic Gradient Langevin Dynamics (SGLD), Stochastic Gradient Riemann

Langevin Dynamics (SGRLD), and Stochastic Gradient Hamiltonian Monte Carlo
(SGHMC) are proposed in [14], [13], and [7], respectively. [10] provides a complete
recipe for SG-MCMC based on continuous Markov processes specified via a curl matrix
and a diffusion matrix, as we have shown in Section 3.

Here are some applications and recent advances of SG-MCMC:
5.1 Scalable Bayesian Inference

More than under the i.i.d assumption, SG-MCMC algorithms have proven useful for
time-dependent data as well.

• [1] applies SG-MCMC on scalable distributed Bayesian matrix factorization and
proposes an algorithm based on distributed stochastic gradient Langevin dynamics.

• [11] demonstrates outperforming results in learning the parameters of hidden
Markov models(HMMs).

• [2] develops novel buffered SG-MCMC samplers for discrete, continuous, and
mixed-type state space models(SSMs) with analytic message passing.

• [3] further proposes particle buffered SG-MCMC samplers to generalize the buffered
gradient estimators to nonlinear SSMs.

5.2 Variational Inference and Optimization
A recent development combines ideas from SG-MCMC and variational inference

(VI), which traditionally makes strong assumptions about the posterior’s functional form.
The new method, described as a non-parametric VI scheme, relaxes these assumptions
and improves the mixing rate of the Markov chain. This is achieved by operating on a
"self-averaged" posterior energy function, where parts of the latent variables are averaged
over samples from earlier iterations.

The method can be modified further in a "dropout" manner for better scalability.
The new MCMC/VI hybrid allows sampling from a fully joint posterior, a completely
factorized posterior, and any in-between, thereby balancing approximation quality with
speed. See [4],[5],[16],[12],[8].
5.3 Deep Learning and Neural Networks

SG-MCMC is also being used for Bayesian inference in deep learning models,
especially Bayesian neural networks (BNNs). BNNs rely on ensemble averages over
model parameters typically obtained from MCMC algorithms, contrasting with regular
neural networks that depend on a single set of parameters. Due to their size, BNNs
require scalable MCMC approaches like SGMCMC. The recently proposed structured
SGMCMC scheme has shown improvements in both small and large-scale experiments
on ResNet-20 architectures on CIFAR-10, Fashion MNIST, and SVHN in terms of
runtime and final accuracy. See [15],[9],[6],[17].
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article listings
# −∗− coding : u t f −8 −∗−
" " "### Unimodal Gaussian " " "

import torch
import torch . optim as optim
import tqdm
import seaborn as sns
import numpy as np
from matp lo t l i b import pyplot as p l t
import s c ipy . l i n a l g as l a

c l a s s NomalDist :
def __init__( s e l f , mu, sigma ) :

s e l f . d = l en (mu)
s e l f .mu = mu
s e l f . sigma = sigma
s e l f . sigma_inv = torch . i nv e r s e ( s e l f . sigma )
s e l f . sigma_cho = torch . cho l e sky ( sigma )

def l o s s ( s e l f , x ) :
" " " Quanti ty to be opt imized l a t e r ( neg l o g d e n s i t y o f d i s t r i b u t i o n in t h i s case ) " " "
return ( x − s e l f .mu) .T @ ( s e l f . sigma_inv @ (x − s e l f .mu) )

def sample ( s e l f , n_samples ) :
" " " Helper to re turn samples o f d i s t r i b u t i o n " " "
z = torch . randn ( ( n_samples , s e l f . d ) )
samples = ( s e l f . sigma_cho @ z .T) .T
samples += s e l f .mu
return samples

c l a s s BiModalNormal :
def __init__( s e l f , mu1 , mu2 , sigma1 , sigma2 ) :

s e l f . d = l en (mu1)
s e l f .mu1 = mu1
s e l f .mu2 = mu2
s e l f . sigma1 = sigma1
s e l f . sigma2 = sigma2
s e l f . sigma1_inv = torch . i nv e r s e ( s e l f . sigma1 )
s e l f . sigma2_inv = torch . i nv e r s e ( s e l f . sigma2 )
s e l f . sigma1_cho = torch . cho l e sky ( sigma1 )
s e l f . sigma2_cho = torch . cho l e sky ( sigma2 )

def l o s s ( s e l f , x ) :
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" " "
Quanti ty to be opt imized l a t e r ( neg l o g d e n s i t y o f d i s t r i b u t i o n in t h i s case ) .
This i s sum of nega t i v e l o g d e n s i t i e s f o r each mode .
" " "
l o s s 1 = (x − s e l f .mu1 ) .T @ ( s e l f . sigma1_inv @ (x − s e l f .mu1) )
l o s s 2 = (x − s e l f .mu2 ) .T @ ( s e l f . sigma2_inv @ (x − s e l f .mu2) )
return −torch . l og ( torch . exp (−0.5∗ l o s s 1 ) + torch . exp (−0.5∗ l o s s 2 ) )

def sample ( s e l f , n_samples ) :
" " "
Helper to re turn samples o f d i s t r i b u t i o n .
Samples are generated by f i r s t sampling from each mode and then s t a c k i n g the r e s u l t s .
" " "
z1 = torch . randn ( ( n_samples // 2 , s e l f . d ) )
samples1 = ( s e l f . sigma1_cho @ z1 .T) .T
samples1 += s e l f .mu1

z2 = torch . randn ( ( n_samples − n_samples // 2 , s e l f . d ) )
samples2 = ( s e l f . sigma2_cho @ z2 .T) .T
samples2 += s e l f .mu2

return torch . cat ( ( samples1 , samples2 ) , dim=0)

c l a s s MultiModalNormal :
def __init__( s e l f , mus , s igmas ) :

" " "
I n i t i a l i z e MultiModalNormal wi th a l i s t o f means and covar iance matr ices .

mus : l i s t o f to rch t en so r s
L i s t o f means f o r each mode .

sigmas : l i s t o f to rch t en so r s
L i s t o f covar iance matr ices f o r each mode .

" " "
a s s e r t l en (mus) == l en ( sigmas ) , "Number␣ o f ␣means␣and␣ cova r i ance s ␣must␣match "

s e l f . d = l en (mus [ 0 ] )
s e l f .mus = mus
s e l f . s igmas = sigmas
s e l f . sigmas_inv = [ torch . i nv e r s e ( sigma ) f o r sigma in sigmas ]
s e l f . sigmas_cho = [ torch . cho l e sky ( sigma ) f o r sigma in sigmas ]

def l o s s ( s e l f , x ) :
" " "
Compute the nega t i v e l o g d e n s i t y .
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x : torch t ensor
Input sample .

" " "
l o s s e s = [ ]
f o r mu, sigma_inv in z ip ( s e l f .mus , s e l f . sigmas_inv ) :

l o s s = (x − mu) .T @ ( sigma_inv @ (x − mu) )
l o s s e s . append ( l o s s )

return −torch . logsumexp (−0.5 ∗ torch . s tack ( l o s s e s ) , dim=0)

def sample ( s e l f , n_samples ) :
" " "
Sample from the mult imodal d i s t r i b u t i o n .

n_samples : i n t
Number o f samples to genera te .

" " "
num_modes = l en ( s e l f .mus)
samples_per_mode = n_samples // num_modes
l e f tover_sample s = n_samples % num_modes
samples = [ ]

f o r mu, sigma_cho in z ip ( s e l f .mus , s e l f . sigmas_cho ) :
z = torch . randn ( ( samples_per_mode + ( l e f tover_sample s > 0) , s e l f . d ) )
samples . append ( ( sigma_cho @ z .T) .T + mu)
l e f tover_sample s −= 1

return torch . cat ( samples , dim=0)

c l a s s SGLD:
def __init__( s e l f , params , eta , log_dens i ty ) :

" " "
S t o c h a s t i c g rad i l o g_dens i t y en t monte ca r l o sampler v ia Langevin Dynamics
Parameters
−−−−−−−−−−
eta : f l o a t

l e a rn ing ra t e param
log_dens i t y : f unc t i on computing l og_dens i t y ( l o s s ) f o r g i ven sample and batch o f data .
" " "
s e l f . e ta = eta
s e l f . l og_dens i ty = log_dens i ty
s e l f . opt imize r = torch . optim .SGD(params , l r =1, momentum=0.)

# momentum i s s e t to zero
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def _noise ( s e l f , params ) :
" " "We are adding param+noise to each param . " " "
std = np . sq r t (2 ∗ s e l f . e ta )
l o s s = 0 .
f o r param in params :

no i s e = torch . randn_like (param) ∗ std
l o s s += ( no i s e ∗ param ) . sum ( )

return l o s s

def sample ( s e l f , params ) :
s e l f . opt imize r . zero_grad ( )
l o s s = s e l f . l og_dens i ty ( params ) ∗ s e l f . e ta
l o s s += s e l f . _noise ( params ) # add noi se ∗param be f o r e c a l l i n g backward !
l o s s . backward ( ) # l e t autograd do i t s t h ing
s e l f . opt imize r . s t ep ( )
return params

c l a s s SGHMC:

def __init__( s e l f , params , alpha , eta , log_dens i ty ) :
" " "
S t o c h a s t i c Gradient Monte Carlo sampler WITH momentum
This i s Hamiltonian Monte Carlo .

Paramters
−−−−−−−−−
alpha : momentum param
eta : l e a rn ing ra t e
l og_dens i t y : l o s s f unc t i on f o r g i ven sample/ batch o f data
" " "
s e l f . a lpha = alpha
s e l f . e ta = eta
s e l f . l og_dens i ty = log_dens i ty
s e l f . opt imize r = torch . optim .SGD(params , l r =1, momentum=(1 − s e l f . alpha ) )

def _noise ( s e l f , params ) :
std = np . sq r t (2 ∗ s e l f . alpha ∗ s e l f . e ta )
l o s s = 0 .
f o r param in params :

no i s e = torch . randn_like (param) ∗ std
l o s s += ( no i s e ∗ param ) . sum ( )

return l o s s
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def sample ( s e l f , params ) :
s e l f . opt imize r . zero_grad ( )
l o s s = s e l f . l og_dens i ty ( params ) ∗ s e l f . e ta
l o s s += s e l f . _noise ( params )
l o s s . backward ( )
s e l f . opt imize r . s t ep ( )
return params

c l a s s SGRLD:

def __init__( s e l f , params , eta , log_density , p r e c ond i t i on e r=None ) :
" " "
S t o c h a s t i c Gradient Riemannian Langevin Dynamics sampler

Parameters
−−−−−−−−−−
params : l i s t o f to rch t en so r s

Model parameters
e ta : f l o a t

Learning ra t e
l og_dens i t y : f unc t i on

Log p r o b a b i l i t y d e n s i t y f unc t i on
precond i t i one r : f unc t i on ( o p t i o n a l )

Precond i t i on ing matrix f unc t i on
" " "
s e l f . e ta = eta
s e l f . l og_dens i ty = log_dens i ty
s e l f . opt imize r = torch . optim .SGD(params , l r =1, momentum=0.)

# momentum i s s e t to zero
s e l f . p r e c ond i t i on e r = pr e cond i t i on e r i f pr e cond i t i on e r i s not None e l s e lambda x : 1

def _noise ( s e l f , params ) :
std = np . sq r t (2 ∗ s e l f . e ta )
l o s s = 0 .
f o r param in params :

no i s e = torch . randn_like (param) ∗ std
l o s s += ( no i s e ∗ param ∗ s e l f . p r e c ond i t i on e r (param ) ) . sum ( )

return l o s s

def sample ( s e l f , params ) :
s e l f . opt imize r . zero_grad ( )
l o s s = s e l f . l og_dens i ty ( params ) ∗ s e l f . e ta
l o s s += s e l f . _noise ( params ) # add noi se ∗param be f o r e c a l l i n g backward !
l o s s . backward ( ) # l e t autograd do i t s t h ing
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s e l f . opt imize r . s t ep ( )
return params

# true data genera t ion process ( UniModal )
mu = torch . z e r o s (2 )
sigma = torch . t en so r ( [ [ 1 , . 8 ] ,

[ −.8 , 1 0 ] ] )
d i s t = NomalDist (mu, sigma )
or ig ina l_sample s = d i s t . sample (10000)

# true data genera t ion process ( BiModal )
mu1 = torch . z e r o s (2 )
mu2 = torch . t enso r ( [ 5 , 5 ] )
sigma1 = torch . t enso r ( [ [ 1 , . 9 ] ,

[ −.9 , 1 0 ] ] )
sigma2 = torch . t enso r ( [ [ 1 0 , −.9] ,

[ . 9 , 1 0 ] ] )
d i s t 2 = BiModalNormal (mu1 ,mu2 , sigma1 , sigma2 )
or ig ina l_sample s2 = d i s t . sample (10000)
# true d e n s i t y p l o t
sns . kdep lot ( or ig ina l_sample s2 [ : , 0 ] , o r i g ina l_sample s2 [ : , 1 ] )

# HMC
def E(A, u0 , v0 , u , v ) :

" " " Tota l energy . " " "
A = np . array ( [ [ 0 , 1 ] , [ − 1 , 0 ] ] )
return ( u0 @ tau @ u0 + v0 @ v0 ) − (u @ tau@u + v @ v)

def l e a p f r o g (A, u , v , h , N) :
" " " Leapfrog f i n i t e d i f f e r e n c e scheme . " " "
v = v − h/2 ∗ A @ u
f o r i in range (N−1):

u = u + h ∗ v
v = v − h ∗ A @ u

u = u + h ∗ v
v = v − h/2 ∗ A @ u

return u , v

n i t e r = 10000
h = 0.01
o rb i t = np . z e r o s ( ( n i t e r +1, 2 ) )
u = np . array ( [ −10 . , 0 . ] )
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o rb i t [ 0 ] = u
tau = la . inv ( sigma )
# change tau f o r Gaussian mixture ! ! ! !
A = np . array ( [ [ 0 , 1 ] , [ − 1 , 0 ] ] )
f o r k in tqdm . tqdm( range ( n i t e r ) ) :

v0 = np . random . normal ( 0 , 1 , 2 )

u , v = l e ap f r o g ( tau , u , v0 , h , N)

# accept−r e j e c t
u0 = o rb i t [ k ]
a = np . exp (E(A, u0 , v0 , u , v ) )
r = np . random . rand ( )

i f r < a :
o r b i t [ k+1] = u

e l s e :
o r b i t [ k+1] = u0

# SGLD
x = torch . t en so r ( [ −10 . , 0 . ] , r equ i res_grad=True )
sg ld = SGLD( [ x ] , eta=1e−1, log_dens i ty=d i s t . l o s s )
samples_SGLD = [ ]

f o r epoch in tqdm . tqdm( range ( n i t e r ) ) :
x = sg ld . sample ( x )
samples_SGLD . append (x . data . c l one ( ) . detach ( ) .T)

samples_SGLD = np . array (np . vstack ( samples_SGLD ) )

# SGRLD
x = torch . t en so r ( [ −10 . , 0 . ] , r equ i res_grad=True )
s g r l d = SGRLD( [ x ] , e ta=1e−1, log_dens i ty=d i s t . l o s s )
samples_SGRLD = [ ]

f o r epoch in tqdm . tqdm( range ( n i t e r ) ) :
x = sg r l d . sample ( x )
samples_SGRLD . append (x . data . c l one ( ) . detach ( ) .T)

samples_SGRLD = np . array (np . vstack (samples_SGRLD))

# SGHMC
x = torch . t en so r ( [ −10 . , 0 . ] , r equ i res_grad=True )
sghmc = SGHMC( [ x ] , alpha =0.01 , eta=1e−1, log_dens i ty=d i s t . l o s s )
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samples_SGHMC = [ ]

f o r epoch in tqdm . tqdm( range ( n i t e r ) ) :
x = sghmc . sample ( x )
samples_SGHMC. append (x . detach ( ) . c l one ( ) .T)

samples_SGHMC = np . array (np . vstack (samples_SGHMC))

# HMC p l o t
#sns . k d e p l o t ( o r b i t [ : , 0 ] , o r b i t [ : , 1 ] , a lpha =.5)
#p l t . p l o t ( o r b i t [ : , 0 ] , o r b i t [ : , 1 ] , a lpha =0.2 , l a b e l = ’ ’)
#p l t . s c a t t e r ( o r b i t [ : 1 , 0 ] , o r b i t [ : 1 , 1 ] , c=’ red ’ , s=30)
p l t . s c a t t e r ( o r b i t [ 1 : , 0 ] , o r b i t [ 1 : , 1 ] ,

c=np . arange ( n i t e r ) [ : : − 1 ] ,
cmap=’Reds ’ , alpha =.2 , l a b e l=’HMC’ )

sns . kdep lot ( o r i g ina l_sample s [ : , 0 ] , o r i g ina l_sample s [ : , 1 ] )
p l t . l egend ( )
p l t . ax i s ( [ −5 ,5 , −10 ,10])

# SGLD p l o t
sns . kdep lot ( o r i g ina l_sample s [ : , 0 ] , o r i g ina l_sample s [ : , 1 ] )
p l t . s c a t t e r ( samples_SGLD [ : , 0 ] , samples_SGLD [ : , 1 ] ,

c=np . arange ( 1 0000 ) [ : : −1 ] ,
cmap=’Reds ’ , alpha =.2 , l a b e l=’SGLD ’ )

p l t . l egend ( )

# SGRLD p l o t
sns . kdep lot ( o r i g ina l_sample s [ : , 0 ] , o r i g ina l_sample s [ : , 1 ] )
p l t . s c a t t e r ( samples_SGRLD [ : , 0 ] , samples_SGRLD [ : , 1 ] ,

c=np . arange ( 1 0000 ) [ : : −1 ] , cmap=’Reds ’ ,
alpha =.2 , l a b e l=’SGRLD’ )

p l t . l egend ( )

# SGHMC p l o t
sns . kdep lot ( o r i g ina l_sample s [ : , 0 ] , o r i g ina l_sample s [ : , 1 ] )
p l t . s c a t t e r (samples_SGHMC [ : , 0 ] , samples_SGHMC [ : , 1 ] ,

c=np . arange ( n i t e r ) [ : : − 1 ] , cmap=’Reds ’ ,
alpha =.2 , l a b e l=’SGHMC’ )

p l t . l egend ( )

f i g = p l t . f i g u r e ( )

# HMC
ax1 = f i g . add_subplot ( 2 , 2 , 1 )
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#p l t . s u b p l o t (221)
ax1 . s c a t t e r ( o r b i t [ 1 : , 0 ] , o r b i t [ 1 : , 1 ] ,

c=np . arange ( n i t e r ) [ : : − 1 ] ,
cmap=’Reds ’ , alpha =.2 , l a b e l=’HMC’ )

sns . kdep lot ( o r i g ina l_sample s [ : , 0 ] , o r i g ina l_sample s [ : , 1 ] )
ax1 . l egend ( )

#n i t e r =1000
#p l t . s u b p l o t (222)
# SGHMC p l o t
ax2 = f i g . add_subplot ( 2 , 2 , 2 )
sns . kdep lot ( o r i g ina l_sample s [ : , 0 ] , o r i g ina l_sample s [ : , 1 ] )
ax2 . s c a t t e r (samples_SGHMC [ : , 0 ] , samples_SGHMC [ : , 1 ] ,

c=np . arange ( n i t e r ) [ : : − 1 ] , cmap=’Reds ’ ,
alpha =.2 , l a b e l=’SGHMC’ )

ax2 . l egend ( )

# SGLD
ax3 = f i g . add_subplot ( 2 , 2 , 3 )
#p l t . s u b p l o t (223)
sns . kdep lot ( o r i g ina l_sample s [ : , 0 ] , o r i g ina l_sample s [ : , 1 ] )
ax3 . s c a t t e r ( samples_SGLD [ : , 0 ] , samples_SGLD [ : , 1 ] ,

c=np . arange ( n i t e r ) [ : : − 1 ] , cmap=’Reds ’ ,
alpha =.2 , l a b e l=’SGLD ’ )

ax3 . l egend ( )

# SGRLD
ax4 = f i g . add_subplot ( 2 , 2 , 4 )
#p l t . s u b p l o t (224)
sns . kdep lot ( o r i g ina l_sample s [ : , 0 ] , o r i g ina l_sample s [ : , 1 ] )
ax4 . s c a t t e r ( samples_SGRLD [ : , 0 ] , samples_SGRLD [ : , 1 ] ,

c=np . arange ( n i t e r ) [ : : − 1 ] , cmap=’Reds ’ ,
alpha =.2 , l a b e l=’SGRLD’ )

ax4 . l egend ( )

f i g . s a v e f i g ( ’ unimodal␣Gaussian . png ’ )

" " "### Bimodal Gaussian " " "

# true data genera t ion process ( BiModal )
N=10000
mu1 = torch . z e r o s (2 )
mu2 = torch . t enso r ( [ 5 , 5 ] )
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sigma1 = torch . t enso r ( [ [ 1 , . 9 ] ,
[ −.9 , 1 0 ] ] )

sigma2 = torch . t enso r ( [ [ 1 0 , −.9] ,
[ . 9 , 1 0 ] ] )

d i s t 2 = BiModalNormal (mu1 ,mu2 , sigma1 , sigma2 )
or ig ina l_sample s2 = d i s t 2 . sample (N)
# true d e n s i t y p l o t
sns . kdep lot ( or ig ina l_sample s2 [ : , 0 ] , o r i g ina l_sample s2 [ : , 1 ] )

# SGLD
x = torch . t en so r ( [ 1 0 . , 0 . ] , r equ i res_grad=True )
sg ld = SGLD( [ x ] , eta=1e−1, log_dens i ty=d i s t 2 . l o s s )
samples_SGLD = [ ]

f o r epoch in tqdm . tqdm( range (N) ) :
x = sg ld . sample ( x )
samples_SGLD . append (x . data . c l one ( ) . detach ( ) .T)

samples_SGLD = np . array (np . vstack ( samples_SGLD ) )

# SGRLD
x = torch . t en so r ( [ 1 0 . , 0 . ] , r equ i res_grad=True )
s g r l d = SGRLD( [ x ] , e ta=1e−1, log_dens i ty=d i s t 2 . l o s s )
samples_SGRLD = [ ]

f o r epoch in tqdm . tqdm( range (N) ) :
x = sg r l d . sample ( x )
samples_SGRLD . append (x . data . c l one ( ) . detach ( ) .T)

samples_SGRLD = np . array (np . vstack (samples_SGRLD))

# SGHMC
x = torch . t en so r ( [ 1 0 . , 0 . ] , r equ i res_grad=True )
sghmc = SGHMC( [ x ] , alpha =0.01 , eta=1e−1, log_dens i ty=d i s t 2 . l o s s )
samples_SGHMC = [ ]

f o r epoch in tqdm . tqdm( range (N) ) :
x = sghmc . sample ( x )
samples_SGHMC. append (x . detach ( ) . c l one ( ) .T)

samples_SGHMC = np . array (np . vstack (samples_SGHMC))

f i g = p l t . f i g u r e ( )
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# true d e n s i t y p l o t
ax1 = f i g . add_subplot ( 2 , 2 , 1 )
#p l t . s u b p l o t (221)
ax1 . s c a t t e r ( or ig ina l_sample s2 [ : , 0 ] , o r i g ina l_sample s2 [ : , 1 ] ,

c=np . arange (N) [ : : − 1 ] , cmap=’Reds ’ ,
alpha =.2 , l a b e l=’True␣ samples ’ )

sns . kdep lot ( or ig ina l_sample s2 [ : , 0 ] , o r i g ina l_sample s2 [ : , 1 ] )
ax1 . l egend ( )

#n i t e r =1000
#p l t . s u b p l o t (222)
# SGHMC p l o t
ax2 = f i g . add_subplot ( 2 , 2 , 2 )
sns . kdep lot ( or ig ina l_sample s2 [ : , 0 ] , o r i g ina l_sample s2 [ : , 1 ] )
ax2 . s c a t t e r (samples_SGHMC [ : , 0 ] , samples_SGHMC [ : , 1 ] ,

c=np . arange (N) [ : : − 1 ] , cmap=’Reds ’ ,
alpha =.2 , l a b e l=’SGHMC’ )

ax2 . l egend ( )

# SGLD
ax3 = f i g . add_subplot ( 2 , 2 , 3 )
#p l t . s u b p l o t (223)
sns . kdep lot ( or ig ina l_sample s2 [ : , 0 ] , o r i g ina l_sample s2 [ : , 1 ] )
ax3 . s c a t t e r ( samples_SGLD [ : , 0 ] , samples_SGLD [ : , 1 ] ,

c=np . arange (N) [ : : − 1 ] , cmap=’Reds ’ ,
alpha =.2 , l a b e l=’SGLD ’ )

ax3 . l egend ( )

# SGRLD
ax4 = f i g . add_subplot ( 2 , 2 , 4 )
#p l t . s u b p l o t (224)
sns . kdep lot ( or ig ina l_sample s2 [ : , 0 ] , o r i g ina l_sample s2 [ : , 1 ] )
ax4 . s c a t t e r ( samples_SGRLD [ : , 0 ] , samples_SGRLD [ : , 1 ] ,

c=np . arange (N) [ : : − 1 ] , cmap=’Reds ’ ,
alpha =.2 , l a b e l=’SGRLD’ )

ax4 . l egend ( )

f i g . s a v e f i g ( ’ bimodal ␣Gaussian . png ’ )

" " "### Trimodal Gaussian " " "

# true data genera t ion process ( TriModal )
N=10000
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mu1 = torch . z e r o s (2 )
mu2 = torch . t enso r ( [ 6 , 0 ] )
mu3 = torch . t enso r ( [ 3 , 3 ] )
mus = [mu1 ,mu2 ,mu3 ]
sigma1 = torch . t enso r ( [ [ 1 , . 9 ] ,

[ . 9 , 1 ] ] )
sigma2 = torch . t enso r ( [ [ 1 , − . 9 ] ,

[ − . 9 , 1 ] ] )
sigma3 = torch . t enso r ( [ [ 1 , . 1 ] ,

[ . 1 , 1 ] ] )
s igmas = [ sigma1 , sigma2 , sigma3 ]
d i s t 3 = MultiModalNormal (mus , sigmas )
or ig ina l_sample s3 = d i s t 3 . sample (N)
# true d e n s i t y p l o t
sns . kdep lot ( or ig ina l_sample s3 [ : , 0 ] , o r i g ina l_sample s3 [ : , 1 ] )

# SGLD
x = torch . t en so r ( [ 3 . , 0 . ] , r equ i res_grad=True )
sg ld = SGLD( [ x ] , eta=1e−1, log_dens i ty=d i s t 3 . l o s s )
samples_SGLD = [ ]

f o r epoch in tqdm . tqdm( range (N) ) :
x = sg ld . sample ( x )
samples_SGLD . append (x . data . c l one ( ) . detach ( ) .T)

samples_SGLD = np . array (np . vstack ( samples_SGLD ) )

# SGRLD
x = torch . t en so r ( [ 3 . , 0 . ] , r equ i res_grad=True )
s g r l d = SGRLD( [ x ] , e ta=1e−1, log_dens i ty=d i s t 3 . l o s s )
samples_SGRLD = [ ]

f o r epoch in tqdm . tqdm( range (N) ) :
x = sg r l d . sample ( x )
samples_SGRLD . append (x . data . c l one ( ) . detach ( ) .T)

samples_SGRLD = np . array (np . vstack (samples_SGRLD))

# SGHMC
x = torch . t en so r ( [ 3 . , 0 . ] , r equ i res_grad=True )
sghmc = SGHMC( [ x ] , alpha =0.01 , eta=1e−1, log_dens i ty=d i s t 3 . l o s s )
samples_SGHMC = [ ]

f o r epoch in tqdm . tqdm( range (N) ) :
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x = sghmc . sample ( x )
samples_SGHMC. append (x . detach ( ) . c l one ( ) .T)

samples_SGHMC = np . array (np . vstack (samples_SGHMC))

f i g = p l t . f i g u r e ( )

# true d e n s i t y p l o t
ax1 = f i g . add_subplot ( 2 , 2 , 1 )
#p l t . s u b p l o t (221)
ax1 . s c a t t e r ( or ig ina l_sample s3 [ : , 0 ] , o r i g ina l_sample s3 [ : , 1 ] ,

c=np . arange (N) [ : : − 1 ] , cmap=’Reds ’ ,
alpha =.2 , l a b e l=’True␣ samples ’ )

sns . kdep lot ( or ig ina l_sample s3 [ : , 0 ] , o r i g ina l_sample s3 [ : , 1 ] )
ax1 . l egend ( )

#n i t e r =1000
#p l t . s u b p l o t (222)
# SGHMC p l o t
ax2 = f i g . add_subplot ( 2 , 2 , 2 )
sns . kdep lot ( or ig ina l_sample s3 [ : , 0 ] , o r i g ina l_sample s3 [ : , 1 ] )
ax2 . s c a t t e r (samples_SGHMC [ : , 0 ] , samples_SGHMC [ : , 1 ] ,

c=np . arange (N) [ : : − 1 ] , cmap=’Reds ’ ,
alpha =.2 , l a b e l=’SGHMC’ )

ax2 . l egend ( )

# SGLD
ax3 = f i g . add_subplot ( 2 , 2 , 3 )
#p l t . s u b p l o t (223)
sns . kdep lot ( or ig ina l_sample s3 [ : , 0 ] , o r i g ina l_sample s3 [ : , 1 ] )
ax3 . s c a t t e r ( samples_SGLD [ : , 0 ] , samples_SGLD [ : , 1 ] ,

c=np . arange (N) [ : : − 1 ] , cmap=’Reds ’ ,
alpha =.2 , l a b e l=’SGLD ’ )

ax3 . l egend ( )

# SGRLD
ax4 = f i g . add_subplot ( 2 , 2 , 4 )
#p l t . s u b p l o t (224)
sns . kdep lot ( or ig ina l_sample s3 [ : , 0 ] , o r i g ina l_sample s3 [ : , 1 ] )
ax4 . s c a t t e r ( samples_SGRLD [ : , 0 ] , samples_SGRLD [ : , 1 ] ,

c=np . arange (N) [ : : − 1 ] , cmap=’Reds ’ ,
alpha =.2 , l a b e l=’SGRLD’ )

ax4 . l egend ( )
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f i g . s a v e f i g ( ’ t r imodal ␣Gaussian . png ’ )

" " "### QuadraModal Gaussian " " "

# true data genera t ion process ( QudraModal )
N=10000
mu1 = torch . z e r o s (2 )
mu2 = torch . t enso r ( [ 5 , 0 ] )
mu3 = torch . t enso r ( [ 5 , 5 ] )
mu4 = torch . t enso r ( [ 0 , 5 ] )
mus = [mu1 ,mu2 ,mu3 ,mu4 ]
sigma1 = torch . t enso r ( [ [ 1 , 0 . ] ,

[ 0 . , 1 ] ] )
sigma2 = torch . t enso r ( [ [ 1 , 0 . ] ,

[ 0 . , 1 ] ] )
sigma3 = torch . t enso r ( [ [ 1 , 0 . ] ,

[ 0 . , 1 ] ] )
sigma4 = torch . t enso r ( [ [ 1 , 0 . ] ,

[ . 0 , 1 ] ] )
s igmas = [ sigma1 , sigma2 , sigma3 , sigma4 ]
d i s t 4 = MultiModalNormal (mus , sigmas )
or ig ina l_sample s4 = d i s t 4 . sample (N)
# true d e n s i t y p l o t
sns . kdep lot ( or ig ina l_sample s4 [ : , 0 ] , o r i g ina l_sample s4 [ : , 1 ] )

# SGLD
x = torch . t en so r ( [ −10 . , 0 . ] , r equ i res_grad=True )
sg ld = SGLD( [ x ] , eta=1e−1, log_dens i ty=d i s t 4 . l o s s )
samples_SGLD = [ ]

f o r epoch in tqdm . tqdm( range (N) ) :
x = sg ld . sample ( x )
samples_SGLD . append (x . data . c l one ( ) . detach ( ) .T)

samples_SGLD = np . array (np . vstack ( samples_SGLD ) )

# SGRLD
x = torch . t en so r ( [ −10 . , 0 . ] , r equ i res_grad=True )
s g r l d = SGRLD( [ x ] , e ta=1e−1, log_dens i ty=d i s t 4 . l o s s )
samples_SGRLD = [ ]

f o r epoch in tqdm . tqdm( range (N) ) :
x = sg r l d . sample ( x )
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samples_SGRLD . append (x . data . c l one ( ) . detach ( ) .T)

samples_SGRLD = np . array (np . vstack (samples_SGRLD))

# SGHMC
x = torch . t en so r ( [ −10 . , 0 . ] , r equ i res_grad=True )
sghmc = SGHMC( [ x ] , alpha =0.01 , eta=1e−1, log_dens i ty=d i s t 4 . l o s s )
samples_SGHMC = [ ]

f o r epoch in tqdm . tqdm( range (N) ) :
x = sghmc . sample ( x )
samples_SGHMC. append (x . detach ( ) . c l one ( ) .T)

samples_SGHMC = np . array (np . vstack (samples_SGHMC))

f i g = p l t . f i g u r e ( )

# true d e n s i t y p l o t
ax1 = f i g . add_subplot ( 2 , 2 , 1 )
#p l t . s u b p l o t (221)
ax1 . s c a t t e r ( or ig ina l_sample s4 [ : , 0 ] , o r i g ina l_sample s4 [ : , 1 ] ,

c=np . arange (N) [ : : − 1 ] , cmap=’Reds ’ ,
alpha =.2 , l a b e l=’True␣ samples ’ )

sns . kdep lot ( or ig ina l_sample s4 [ : , 0 ] , o r i g ina l_sample s4 [ : , 1 ] )
ax1 . l egend ( )

#n i t e r =1000
#p l t . s u b p l o t (222)
# SGHMC p l o t
ax2 = f i g . add_subplot ( 2 , 2 , 2 )
sns . kdep lot ( or ig ina l_sample s4 [ : , 0 ] , o r i g ina l_sample s4 [ : , 1 ] )
ax2 . s c a t t e r (samples_SGHMC [ : , 0 ] , samples_SGHMC [ : , 1 ] ,

c=np . arange (N) [ : : − 1 ] , cmap=’Reds ’ ,
alpha =.2 , l a b e l=’SGHMC’ )

ax2 . l egend ( )

# SGLD
ax3 = f i g . add_subplot ( 2 , 2 , 3 )
#p l t . s u b p l o t (223)
sns . kdep lot ( or ig ina l_sample s4 [ : , 0 ] , o r i g ina l_sample s4 [ : , 1 ] )
ax3 . s c a t t e r ( samples_SGLD [ : , 0 ] , samples_SGLD [ : , 1 ] ,

c=np . arange (N) [ : : − 1 ] , cmap=’Reds ’ ,
alpha =.2 , l a b e l=’SGLD ’ )

ax3 . l egend ( )
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# SGRLD
ax4 = f i g . add_subplot ( 2 , 2 , 4 )
#p l t . s u b p l o t (224)
sns . kdep lot ( or ig ina l_sample s4 [ : , 0 ] , o r i g ina l_sample s4 [ : , 1 ] )
ax4 . s c a t t e r ( samples_SGRLD [ : , 0 ] , samples_SGRLD [ : , 1 ] ,

c=np . arange (N) [ : : − 1 ] , cmap=’Reds ’ ,
alpha =.2 , l a b e l=’SGRLD’ )

ax4 . l egend ( )

f i g . s a v e f i g ( ’ quadramodal␣Gaussian . png ’ )

" " "### Writing " " "
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