Stochastic Gradient MCMC

Yichen Ji

Department of Statistics, University of Chicago
May 9, 2023

1 Large-Scale and High-Dimension: Computational Challenges

Markov Chain Monte Carlo (MCMC) methods have long been a cornerstone of
statistical inference, providing a principled mechanism to draw samples from complex,
high-dimensional distributions. These techniques are particularly essential in the
context of Bayesian statistics, where the posterior distribution of model parameters
is approximated by sampling. Despite their versatility and theoretical guarantees,
traditional MCMC methods face significant computational challenges when applied to
large-scale, high-dimensional problems, such as those encountered in Bayesian deep
learning. These challenges primarily stem from the need to compute and manipulate
full-gradient information, engendering a high computational cost that scales unfavorably
with the size of the dataset and the dimensionality of the model.

In large-scale problems, the posterior distribution is typically proportional to the
product of a likelihood term (which depends on the entire dataset) and a prior term.
Consequently, computing the gradient requires summing over all data points, resulting
in an operation that scales linearly with the size of the dataset. For modern applications
involving millions or even billions of data points, this requirement can render traditional
MCMC methods computationally infeasible.

Additionally, the efficiency of MCMC methods is often hampered by the curse of
dimensionality. As the dimensionality of the parameter space increases, the volume of
the space grows exponentially, leading to increasingly sparse and inefficient sampling.
Moreover, traditional MCMC methods typically rely on global proposal distributions
that do not adapt to the local geometry of the target distribution, which can result
in slow mixing and poor exploration of the parameter space in high dimensions. This
problem is exacerbated in the context of Bayesian deep learning, where models can have
millions of parameters.

Stochastic Gradient Markov Chain Monte Carlo (SG-MCMC) methods have been de-
veloped to respond to these challenges. By leveraging stochastic optimization techniques,
SG-MCMC methods replace the exact gradient computations of traditional MCMC with
noisy estimates based on mini-batches of data. This modification significantly reduces
the computational cost per iteration and makes it possible to apply MCMC methods to
large-scale problems. Furthermore, specific SG-MCMC methods incorporate adaptive
proposal mechanisms that account for the local geometry of the target distribution,
thereby mitigating the issues associated with high-dimensional sampling. Therefore,
SG-MCMC methods, by tackling the computational challenges of traditional MCMC,
have emerged as a promising avenue for scalable Bayesian inference in the era of big
data and high-dimensional modeling.

2 Preliminaries: Two Components

In the context of Bayesian statistics, let 8 denote a parameter vector with prior
p(0) and data likelihood p(z|f). The posterior distribution of a set of N observed data
points X = {x;}¥, is

N

p(01X) o p(0) [] p(x:l0)
=1

2.1 Stochastic Gradient Descent(SGD)

Stochastic Gradient Descent (SGD) is a popular optimization algorithm used in
machine learning and deep learning for training models. Unlike standard Gradient
Descent which computes the gradient using the entire dataset, SGD estimates the
gradient using a single or a few randomly selected samples called mini-batch as a
stochastic approximation, thereby making it more computationally efficient for large
datasets.

Suppose our task is to find the maximum a posteriori (MAP) estimator 6* of the
true parameter 6. In SGD, given a subset of n data points X; = {x1, ..., T}, the
iterative process of updating parameters at each iteration t is performed as follows:

N n
Ab; = Z(V log p(6;) + - ZVIOgP(UUti | 9t)>

i=1

The process is repeated for each minibatch until a stopping criterion is met. The
key idea here is that: over multiple iterations the whole dataset is used and the noise in
the gradient caused by using subsets rather than the whole dataset averages out.

2.2 Continuous Dynamics

Continuous dynamics leverage physical system simulations to propose future states
in the Markov chain. Suppose we want to sample from the posterior distribution of 8 in
the form of

p(0]X) o exp(=U(0))

where

U0) =—> logp(z|0) — log p(6)

is called the potential energy function. We think of the posterior distribution as
an energy landscape, and we would like to use continuous dynamics to explore such
landscape as much as possible.

We will introduce two common dynamics, Hamiltonian and Langevin dynamics, as
well as the corresponding sampling algorithms.

2.2.1 Hamiltonian Dynamics and Hamiltonian Monte Carlo (HMC)

Hamiltonian dynamics model the parameter space as a physical system, where the
probability distribution corresponds to the potential energy and parameters move like
particles with kinetic energy. The dynamics simulate the physical motion of an object
with position 6, momentum r, and mass M on a frictionless surface, which can be
mathematically formulated as a system of ordinary differential equations (ODEs):

df = M~rdt
dr = —VU(0)dt

Hamiltonian Monte Carlo (HMC) adds an auxiliary momentum variable r to augment
the target posterior distribution of € to be

w(0,1) x exp(=U(0) — %TTMflr =exp(—H(0,r))

where H(0,7) = U(0) + K(r) is called Hamiltonian or total energy, which is ideally
conserved i.e. walking around a given level set of the energy landscape.

To achieve ergodicity, we resample the momentum variable to explore across different
level sets for representative sampling. In practice, however, we cannot simulate exactly
from the continuous system, so we need to do discretization of Hamilton equations
by leveraging numerical integrators such as the Leapfrog method, which inevitably
introduces some discretization errors. Nevertheless, an accept/reject mechanism like
Metropolis-Hasting will correct such errors to leave the target distribution invariant.

Algorithm 2.1 Hamiltonian Monte Carlo (HMC)

Input: Starting position #Y) and step size €
fort«+ 1,...,N do
MOMENTUM REFRESHMENT
r® ~ N(0, M)
LEAPFROG DISCRETIZATION
o < o — §VU(90)
for i < 1,...,m do
0; +— 01-,1) + EM_ITZ'_l
Ty < Ti—1 — EVU(Hz)
end for
Tm <= Tm — §VU (0n)
(0%, r*) < (O,)
METROPOLIS-HASTINGS CORRECTION

6*,r*) w.p. minj1,
Set (Q(HI)’T(HI)) - { ((0(15)7: 1:2]’5)13 Wm;n{l —emin{l,eH(e(t)’r<t))_H(9*’r*)}

H(0W rO)—H(6* r*)

end for
Output: Samples 6, ... (V)

2.2.2 Langevin Dynamics and Langevin Monte Carlo (MALA)

Langevin dynamics introduces friction and random noise into the system’s dynamics,
which dissipates energy and injects stochasticity, respectively. The Langevin diffusion is
defined by the stochastic differential equation (SDE):

do — —%VU(G)dt + dB,

where VU (0) is the drift term and B; denotes d-dimensional Brownian motion.
Over infinitesimally small time intervals € > 0, the Langevin diffusion has approximate
dynamics given by

Opin ~ O; — §VU(«9t) +vhz

where Z is a vector of d independent standard Gaussian random variables.

This zoom-in approximation perspective also motivates us how to discretize the
continuous Langevin dynamics whose equilibrium distribution is the target posterior
distribution p(8|X) o exp(—U(#)) o p(0) [T, p(z;]0), by taking gradient steps and
injecting Gaussian noise into the parameter updates. Here’s the update procedure:

N
Al = % (V log p(6) + Y _ Vlogp(x; | 99) +

i=1

where 1, ~ N (0, ¢)

Algorithm 2.2 Metropolis-Adjusted Langevin Algorithm (MALA)

Input: Starting position 8! and step size €
fort < 1,...,N do

(GAUSSIAN NOISE GENERATION

r® ~ N(0,1)

PROPOSAL CALCULATION

0" — 00 + VU OD) + er®)

METROPOLIS-HASTINGS CORRECTION

Accept (1) = 9* with probability min{l, Wm}

where ¢(0,0') = N (0,0 + S VU(0), €21

Otherwise set 81D =)

end for
Output: Samples 6, ... 9(N)

Langevin Monte Carlo (LMC), also known as the Metropolis-adjusted Langevin
algorithm (MALA), uses a combination of Langevin dynamics and accept/reject mecha-
nism to generate the states of a random walk that makes target posterior distribution
invariant. Here’s an intuitive breakdown of each step:

e Langevin dynamics employ gradient flow of the target to propose new states, driv-
ing the random walk towards regions of high probability (first-order information).

o Metropolis-Hastings decides to accept/reject the proposals from the dynamics
by evaluating the target probability density for better mixing and convergence
(zero-order information).

3 Connecting Dynamics with SGD: SG-MCMC

3.1 Framework

The general idea is to transform the posterior sampling process into the simulation of
a continuous dynamic system, which is utilized to establish a Markov transition kernel.
Generically speaking, all continuous Markov processes we have known for sampling
can be written as a stochastic differential equation (SDE) specified by two matrices, a
positive semi-definite diffusion matrix D and a skew-symmetric curl matrix Q. The
SDE is of the form

dz = f(z)dt + \/2D(z)dW (t)

where z can represent either the target parameter 6 itself, or the augmented state
space with auxiliary variables (6, r). W (t) denotes a d-dimensional Wiener process, and
f(z) denotes the deterministic drift term written in terms of the target distribution

d
f(z) = —[D(2) + Q(2)]VH(z) + I'(z) Zai z) + Qij(2))

[10] proves this framework as complete in two folds:

« Given any positive semi-definite diffusion D(z) and skew-symmetric curl Q(z),
define a stochastic dynamic system using these two matrices, then this system
will have a unique stationary distribution.

e Given a divergence-free vector field characterizing a stationary distribution, there
exists a skew-symmetric curl matrix Q(z) and a positive semi-definite diffusion
matrix D(z) such that the resulting stochastic system has the given vector field
as its stationary distribution.

Under this framework, like HMC, we consider an e-discretization of the continuous
dynamics expressed by the above SDE with full-data update first:

A(zt) = —et[(D(zt) + Q(z:)) VH (z¢) + T'(ze)] + N (0, 2¢,D(z4))

Then, we connect such discretized dynamics with the spirit of SGD, which is replacing
the full gradient evaluation with stochastic gradient

Zlogpx[ﬁ —logp(d); ScS
‘ x€S

where S are subsets i.e. mini-batches of the full dataset S.

This stochastic gradient estimator of the full data gradient is noisy but unbiased.
However, a corresponding concern is: whether the corresponding stochastic noise using
U will lose the invariance of target distribution in the new dynamics. If not, how to
offset such a negative effect to keep the target invariant?

It turns out that if we further assume

VU(9) = VU(8) +N(0,V(6))

and by employing CLT, we can get a noisy version of the Hamiltonian gradient
VH(z) = VH(z)+ [N(0,V(6)),0]”

Then, we achieve a general version of the discretized dynamics using the stochastic
Hamiltonian gradient as our update rule:

Ziil = 70 — € [(D(zt) + Q(z))VH(z) + r(zt)} +N(o, € (2D(zt) - etét))

where By is an estimate of Gaussian noise variance V(6).

Therefore, as ¢, — 0, that is, in an infinitesimal step size, the full-data update yields
the correct invariant distribution, and our stochastic update approaches to the full-data
update. Thus, our stochastic update leaves the target distribution invariant as ¢, — 0
as well. Note that this argument is only for intuitive understanding. Due to the page
limit, see [10] for formal mathematical proofs.

3.2 Algorithms/ Samplers

Here, we illustrate how to apply such a complete framework to the actual samplers
by specifying diffusion D(z), curl Q(z), and H(z).

3.2.1 Stochastic Gradient Langevin Dynamics(SGLD)

SGLD follows first-order Langevin dynamics to generate samples by

Oi11 < 0; — DVU(6;) + N(0,2¢;D)

Unlike HMC, we don’t have the auxiliary momentum variabAle in SGLD. This update
rule corresponds to z =6, H(0) = U(0),D(0) = D,Q(0) =0, By = 0.
3.2.2 Stochastic Gradient Riemann Langevin Dynamics(SGRLD)

In SGLD, the diffusion matrix D(8) = D is deterministic i.e. independent of 6,
which motivates the following generalization of SGLD by using an adaptive diffusion
matrix D(6) = G~1(0) where G(f) is the Fisher information matrix. The update rule is

Ori1 < 0 — [G(0) VT (0) +T(0)] + N (0, 26G(0) ")

corresponding to D(68) = G~(6),Q(6) = 0, B, = 0.Ts(9) = 52, 224

3.2.3 Stochastic Gradient Hamiltonian Monte Carlo(SGHMC)

The naive update rule is by replacing the full gradient VU (9) with the stochastic
gradient V(U (0)) as we previously showed

0t+1 — 0,5 + EtM_th
T4l < T — etVU(Gt) =T — EtVU(et) +N(O, G%V(et))

However, this update rule doesn’t converge to the target stationary distribution.
The correct version is by adding a friction term and employing second-order Langevin
dynamics

0t+1 <— 0,5 =+ EtMith
Tt4+1 — Ty — etVﬁ(Qt) - EtCMith +N(0, €t (20 — Et.ét))

where z = (0,r),H(0,r) = U®0) + 3r"M~'r,Q(6,r) = (2 aI),D(G,r) =

[0 ¢)

4 Experiments

We compare the sampling performance of SGLD, SGRLD, and SGHMC on the
2-D multimodal problem, with 1/2/3/4 modes under Gaussian settings. Each scenario
simulates 10000 samples with the same learning rate n = 0.1 for all 3 methods, and
different choices of correlation values are considered for comparison. Under the same
multimodal problem (i.e. fixed number of modes), we choose the same initialization
point for all 3 methods where the probability density is relatively low. We also compare
the stochastic methods with HMC in the unimodal case. HMC is particularly slow (10
minutes for 10000 iterations) even in the unimodal case possibly due to the accept/reject
scheme i.e. Metropolis-Hastings, so we then compare the stochastic gradient methods
with the samples from the true density distribution for multimodal settings.

10 HMC
5 -

04

—10

T
-10 =5

10 SGLD
5_

04

—10 A —10 A

T T T
=5 0 -75 =50 -25 0.0 2.5

Figure 1 A distant initial point (-10,0) is set on purpose. HMC jumps to the right region
in one step, but all stochastic gradient methods need to take multiple steps to reach the
desired landscape. SGHMC is particularly worse than the other two, but all methods fully
explore the distribution.

10 1

—10

10 4

=10 4

Figure 2 Initial point (10,0) is set at a low-density area on purpose. All SG-MCMC samples
explore the level set corresponding to the initial point quite well but don’t fully exploit
the high-density area around (0,0).

10

7.5
5.0 4
2.5 1
0.0 A
—2.5 1
=5 lIfJ =5 (I.'i fl:: lIO
7.5 7.5
5.0 1 5.0 1
2.5 1 2.5 1
0.0 1 0.0 1
—2.5 A —2.5 A
T T T T T T
=5 0 5 10 =5 0 5 10

Figure 3 All SG-MCMC samples explore the triangle shape quite well, covering all parts of
the density area.

Figure 4 In the isolated scenario, a zero-density initial point (5,5) is set on purpose.
Unsurprisingly, all SG-MCMC methods are trapped in a single Gaussian region and didn’t
explore the other three at all. Interestingly, they all choose the upper-right region, possibly
due to similar dynamics behavior.

11

5 Discussion and Bibliography

Stochastic Gradient Langevin Dynamics (SGLD), Stochastic Gradient Riemann
Langevin Dynamics (SGRLD), and Stochastic Gradient Hamiltonian Monte Carlo
(SGHMC) are proposed in [14], [13], and [7], respectively. [10] provides a complete
recipe for SG-MCMC based on continuous Markov processes specified via a curl matrix
and a diffusion matrix, as we have shown in Section 3.

Here are some applications and recent advances of SG-MCMC:

5.1 Scalable Bayesian Inference

More than under the i.i.d assumption, SG-MCMC algorithms have proven useful for
time-dependent data as well.

o [1] applies SG-MCMC on scalable distributed Bayesian matrix factorization and
proposes an algorithm based on distributed stochastic gradient Langevin dynamics.

o [11] demonstrates outperforming results in learning the parameters of hidden
Markov models(HMMs).

e [2] develops novel buffered SG-MCMC samplers for discrete, continuous, and
mixed-type state space models(SSMs) with analytic message passing.

o [3] further proposes particle buffered SG-MCMC samplers to generalize the buffered
gradient estimators to nonlinear SSMs.

5.2 Variational Inference and Optimization

A recent development combines ideas from SG-MCMC and variational inference
(VI), which traditionally makes strong assumptions about the posterior’s functional form.
The new method, described as a non-parametric VI scheme, relaxes these assumptions
and improves the mixing rate of the Markov chain. This is achieved by operating on a
"self-averaged" posterior energy function, where parts of the latent variables are averaged
over samples from earlier iterations.

The method can be modified further in a "dropout" manner for better scalability.
The new MCMC/VT hybrid allows sampling from a fully joint posterior, a completely
factorized posterior, and any in-between, thereby balancing approximation quality with
speed. See [4],[5],[16],[12],[8].

5.3 Deep Learning and Neural Networks

SG-MCMC is also being used for Bayesian inference in deep learning models,
especially Bayesian neural networks (BNNs). BNNs rely on ensemble averages over
model parameters typically obtained from MCMC algorithms, contrasting with regular
neural networks that depend on a single set of parameters. Due to their size, BNNs
require scalable MCMC approaches like SGMCMC. The recently proposed structured
SGMCMC scheme has shown improvements in both small and large-scale experiments
on ResNet-20 architectures on CIFAR-10, Fashion MNIST, and SVHN in terms of
runtime and final accuracy. See [15],]9],[6],[17].

12

References

1]

[12]

[13]

S. Ahn, A. Korattikara, N. Liu, S. Rajan, and M. Welling. Large-scale distributed
bayesian matrix factorization using stochastic gradient mcmec. In Proceedings of
the 21th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’15, page 9-18, New York, NY, USA, 2015. Association for
Computing Machinery. ISBN 9781450336642. doi: 10.1145/2783258.2783373. URL
https://doi.org/10.1145/2783258.2783373.

C. Aicher, Y.-A. Ma, N. J. Foti, and E. B. Fox. Stochastic gradient mcmc for state
space models, 2019.

C. Aicher, S. Putcha, C. Nemeth, P. Fearnhead, and E. B. Fox. Stochastic gradient
mcmec for nonlinear state space models, 2019.

A. Alexos, A. Boyd, and S. Mandt. Structured stochastic gradient mcmc, 2022.

D. M. Blei, A. Kucukelbir, and J. D. McAuliffe. Variational inference: A review
for statisticians. Journal of the American statistical Association, 112(518):859-877,
2017.

L. Cardelli, A. Csikasz-Nagy, N. Dalchau, M. Tribastone, and M. Tschaikowski. An
activation function free neural network. arXiv preprint arXiv:1912.03383, 2019.

T. Chen, E. Fox, and C. Guestrin. Stochastic gradient hamiltonian monte carlo.
In International conference on machine learning, pages 1683-1691. PMLR, 2014.

M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley. Stochastic variational
inference. Journal of Machine Learning Research, 2013.

Y. Li, R. Turner, R. Chen, and J. Liu. Preconditioned stochastic gradient langevin
dynamics for deep neural networks. arXiv preprint arXiv:1512.07666, 2016.

Y.-A. Ma, T. Chen, and E. Fox. A complete recipe for stochastic gradient mcmc.
Advances in neural information processing systems, 28, 2015.

Y.-A. Ma, N. J. Foti, and E. B. Fox. Stochastic gradient MCMC methods for
hidden Markov models. In D. Precup and Y. W. Teh, editors, Proceedings of the
34th International Conference on Machine Learning, volume 70 of Proceedings
of Machine Learning Research, pages 2265-2274. PMLR, 06-11 Aug 2017. URL
https://proceedings.mlr.press/v70/mal7a.html.

J. T. Ormerod and M. P. Wand. Explaining variational approximations. The
American Statistician, 64(2):140-153, 2010.

S. Patterson and Y. W. Teh. Stochastic gradient riemannian langevin dynamics on
the probability simplex. arXiv preprint arXiv:15301.3840, 2013.

https://doi.org/10.1145/2783258.2783373
https://proceedings.mlr.press/v70/ma17a.html

13

[14] M. Welling and Y. W. Teh. Bayesian learning via stochastic gradient langevin
dynamics. In Proceedings of the 28th international conference on machine learning
(ICML-11), pages 681-688, 2011.

[15] A. Wilson and P. Izmailov. Bayesian deep learning and a probabilistic perspective
of generalization. arXiv preprint arXiv:2002.08791, 2020.

[16] Q. Zhang, F. Nian, S. Patterson, and J. Liu. Advances in variational inference.
arXiv preprint arXiv:1711.05597, 2018.

[17] R. Zhang, C. Li, J. Zhang, C. Chen, and A. G. Wilson. Cyclical stochastic gradient
mcmc for bayesian deep learning, 2020.

14

article listings

—+— coding: utf—8 —¥—
" Unimodal Gaussian """

import torch

import torch.optim as optim

import tqdm

import seaborn as sns

import numpy as np

from matplotlib import pyplot as plt
import scipy.linalg as la

class NomalDist:
def __init__ (self, mu, sigma):
self.d = len (mu)
self .mu = mu
self .sigma = sigma
self.sigma_inv = torch.inverse(self.sigma)
self .sigma_cho = torch.cholesky (sigma)

def loss(self | x):
"""Quantity to be optimized later (meg log density of distribution in
return (x — self.mu).T @ (self.sigma_inv @ (x — self.mu))

def sample(self , n_samples):
"""Helper to return samples of distribution
z = torch.randn ((n_samples, self.d))
samples = (self.sigma cho @ z.T).T
samples 4= self .mu
return samples

nnn

class BiModalNormal:
def __init__ (self, mul, mu2, sigmal, sigma?2):
self.d = len (mul)
self .mul = mul
self .mu2 = mu2

self .sigmal = sigmal
self .sigma2 = sigma?2
self .sigmal inv = torch.inverse(self.sigmal)
self.sigma2_ inv = torch.inverse(self.sigma?2)

self .sigmal_cho = torch.cholesky (sigmal)
self.sigma2_cho = torch.cholesky (sigma2)

def loss(self, x):

15

def

nnn

Quantity to be optimized later (neg log density of distribution in thi

This is sum of megative log densities for each mode.
nnn

lossl = (x — self.mul). T @ (self.sigmal_inv @ (x — self.mul))
loss2 = (x — self .mu2).T @ (self.sigma2_ inv @ (x — self.mu2))
return —torch.log(torch.exp(—0.5%xlossl) 4+ torch.exp(—0.5%xloss2))

sample (self ; n_samples):

Helper to return samples of distribution .

Samples are generated by first sampling from each mode and then stacki
z1 = torch.randn ((n_samples // 2, self.d))

samplesl = (self.sigmal_cho @ z1.T).T

samplesl 4= self .mul

z2 = torch.randn ((n_samples — n_samples // 2, self.d))
samples2 = (self.sigma2 cho @ z2.T).T

samples2 += self .mu2

return torch.cat ((samplesl, samples2), dim=0)

class MultiModalNormal:

def

def

__init__ (self , mus, sigmas):
nonn

Initialize MultiModalNormal with a list of means and covariance matric

mus : list of torch tensors
List of means for each mode.
stgmas : list of torch tensors

List of covariance matrices for each mode.

nonn

assert len(mus) = len(sigmas), "Number of means and covariances must

self.d = len(mus[0])

self .mus = mus

self.sigmas = sigmas

self.sigmas_inv = [torch.inverse (sigma) for sigma in sigmas|
self .sigmas_cho = [torch.cholesky (sigma) for sigma in sigmas]

loss (self , x):

nonn

Compute the negative log density.

16

x : torch temsor

Input sample.

losses = []
for mu, sigma_inv in zip(self.mus, self.sigmas_ inv):
loss = (x —mu).T @ (sigma_inv @ (x — mu))

losses .append(loss)
return —torch.logsumexp(—0.5 * torch.stack(losses), dim=0)

def sample(self , n_samples):

nonn

Sample from the multimodal distribution.

n__samples : int
Number of samples to generate.

nnn

num_modes = len(self.mus)
samples__per_mode = n_samples // num_modes
leftover__samples = n_samples % num_ modes
samples = []

for mu, sigma_cho in zip(self.mus, self.sigmas_cho):
z = torch.randn ((samples_per_mode + (leftover__samples > 0), self.d
samples.append ((sigma_cho @ z.T).T 4+ mu)
leftover__samples —= 1

return torch.cat(samples, dim=0)

class SGLD:
def __ init__ (self, params, eta, log_density):

nonn

Stochastic gradilog__densityent monte carlo sampler via Langevin Dynam:
Parameters

eta: float
learning rate param
log_density: function computing log_density (loss) for given sample an

nnn

self .eta = eta
self.log_density = log_density
self.optimizer = torch.optim.SGD(params, lr=1, momentum=0.)

momentum is set to zero

17

def _noise(self, params):
"""We are adding param+noise to each param.

std = np.sqrt(2 x self.eta)

nnn

loss = 0.
for param in params:
noise = torch.randn_like(param) % std

loss += (noise * param).sum/()
return loss

def sample(self , params):
self.optimizer.zero_grad ()
loss = self.log_density (params) * self.eta
loss += self._ noise(params) # add noisexparam before calling backward
loss .backward () # let autograd do its thing
self.optimizer.step ()
return params

class SGHMC:

def __ init__ (self , params, alpha, eta, log_density):

nonn

Stochastic Gradient Monte Carlo sampler WITH momentum
This is Hamiltonian Monte Carlo.

Paramters

alpha: momentum param
eta: learning rate
log_density: loss function for given sample/batch of data

nnn

self.alpha = alpha

self .eta = eta
self.log_density = log_density
self.optimizer = torch.optim.SGD(params, lr=1, momentum=(1 — self.alph

def _noise(self, params):
std = np.sqrt(2 % self.alpha * self.eta)

loss = 0.
for param in params:
noise = torch.randn_like(param) * std

loss += (noise * param).sum/()
return loss

18

def sample(self, params):

self . optimizer.zero_ grad()

loss = self.log_density(params) * self.eta
loss += self._noise(params)

loss . backward ()

self.optimizer.step ()

return params

class SGRLD:

def

___init__ (self, params, eta, log_density, preconditioner=None):

nnn

Stochastic Gradient Riemannian Langevin Dynamics sampler

Parameters

params : list of torch tensors
Model parameters

eta : float

Learning rate
log _density : function
Log probability density function
preconditioner : function (optional)
Preconditioning matriz function

nonn

self .eta = eta
self.log_density = log_density
self.optimizer = torch.optim.SGD(params, lr=1, momentum=0.)

momentum is set to zero

self.preconditioner = preconditioner if preconditioner is mnot None els

def _noise(self , params):

std = np.sqrt(2 x self.eta)

loss = 0.
for param in params:
noise = torch.randn_like(param) * std

loss += (noise % param % self.preconditioner (param)).sum()
return loss

def sample(self , params):

self.optimizer.zero_grad ()

loss = self.log_density(params) * self.eta

loss += self._ noise(params) # add noisexparam before calling backward
loss .backward () # let autograd do its thing

19

self . optimizer.step ()
return params

true data generation process (UniModal)
mu = torch.zeros (2)
sigma = torch.tensor ([[1, .8],
(—.8, 10]])
dist = NomalDist (mu, sigma)
original samples = dist.sample(10000)

true data generation process (BiModal)

mul = torch.zeros (2)

mu2 = torch.tensor ([5,5])

sigmal = torch.tensor ([[1, .9],
[—.9, 10]])

sigma2 = torch.tensor ([[10, —.9],
[.9, 10]])

dist2 = BiModalNormal(mul,muQ,sigmal ,sigma?2)

original samples2 = dist.sample(10000)

true density plot

sns. kdeplot (original _samples2[:,0], original_ samples2[: 1])

4 HMC
def E(A, u0, v0, u, v):
nnn Total energy' nonn
A= np.array([[O,l],[—l,O]])
return (u0 @ tau @ u0 + v0 @ v0) — (u @ tau@Qu + v @ v)

def leapfrog (A, u, v, h, N):
"""Leapfrog finite difference scheme.
v=v—h/2 x AQu
for i in range(N—1):
u=u-+h x v
v=v—h=xAQu

nonn

u=1u-+h % v

v=v —h/2 x AQu
return u, v

niter = 10000

h = 0.01

orbit = np.zeros ((niter+1, 2))
u = np.array ([—10.,0.])

20

orbit [0] = u
tau = la.inv (sigma)
change tau for Gaussian mixture!!l!!
A = np.array ([[0,1],[—1,0]])
for k in tqdm.tqdm(range(niter)):
v0 = np.random.normal(0,1,2)

u, v = leapfrog(tau, u, v0, h, N)

accept—reject
u0 = orbit [k]

a = np.exp(E(A, u0, v0, u, v))
r = np.random.rand ()
if r < a:
orbit [k+1] = u
else:
orbit [k+1] = u0
SGLD
x = torch.tensor ([—10., 0.], requires_grad=True)

sgld = SGLD([x], eta=le—1, log density=dist.loss)
samples_ SGLD = []

for epoch in tqdm.tqdm(range(niter)):
x = sgld.sample(x)
samples SGLD . append (x.data.clone ().detach ().T)

samples_ SGLD = np.array (np. vstack (samples_ SGLD))

SGRLD

x = torch.tensor ([—10., 0.], requires_grad=True)
sgrld = SGRLD ([x], eta=le—1, log density=dist.loss)
samples. SGRLD = []

for epoch in tqdm.tqdm(range(niter)):
x = sgrld.sample(x)
samples SGRLD . append (x.data.clone ().detach ().T)

samples_ SGRLD = np.array (np.vstack (samples_ SGRLD))
SGHMC

x = torch.tensor([—10., 0.], requires_grad=True)
sghme = SGHMC([x],

alpha 0.01, eta=le—1, log density=dist

.loss)

21

samples SGHMC = []

for epoch in tqdm.tqdm(range(niter)):
x = sghmc.sample (x)
samples SGHMC . append (x. detach (). clone ().T)

samples. SGHMC = np.array (np. vstack (samples_ SGHMC))

HMC plot

#sns. kdeplot (orbit[:, 0], orbit[:, 1],alpha=.5)
#plt.plot(orbit[:,0], orbit[:,1], alpha=0.2,label="")
#plt.scatter (orbit[:1,0], orbit[:1,1], c="red’, s=30)
plt.scatter (orbit [1:,0], orbit[1:,1],

c=np.arange(niter)[:: —1],
cmap="Reds’ ,alpha=.2,label="HMC’)
sns . kdeplot (original samples|[:,0], original samples[:,1])

plt.legend ()
plt.axis([—5,5,—10,10])

SGLD plot

sns . kdeplot (original _samples[:, 0], original_ samples[:, 1])

plt.scatter (samples_ SGLD[:, 0], samples. SGLD[:, 1],
c=np.arange (10000)[:: —1],

cmap="Reds’ ;alpha=.2, label="SGLD")
plt.legend ()

SGRLD plot

sns. kdeplot (original samples|[:, 0], original samples[:, 1])
plt.scatter (samples SGRLD[:, 0], samples SGRLD[:, 1],
c=np.arange (10000)[:: —1], cmap='Reds’,

alpha=.2, label="SGRLD")
plt.legend ()

SGHMC' plot

sns . kdeplot (original samples|[:, 0], original samples[:, 1])

plt.scatter (samples SGHMC|[:, 0], samples SGHMC][:, 1],
c=np.arange (niter)[:: —1], cmap=’Reds’,
alpha=.2, label="SGHMC")

plt.legend ()

fig = plt.figure()

4 HMC
axl = fig.add_subplot(2,2,1)

22

#plt.subplot (221)
axl.scatter (orbit [1:,0], orbit[1l:,1],

c=np.arange(niter)[:: —1],
cmap="Reds’ ,alpha=.2,label="HMC’)
sns . kdeplot (original samples|[:,0], original samples[:,1])

axl.legend ()

#niter=1000
#plt.subplot (222)

SGHMC' plot

ax2 = fig.add_subplot(2,2,2)

sns . kdeplot (original _samples[:, 0], original_ samples[:, 1])

ax2.scatter (samples. SGHMC[:, 0], samples SGHMC|[:, 1],
c=np.arange(niter)[:: —1], cmap="Reds’,

alpha=.2, label="SGHMC")
ax2.legend ()

SGLD
ax3 = fig.add_subplot(2,2,3)
#plt.subplot (223)

sns . kdeplot (original_samples[:, 0], original_ samples[:, 1])
ax3.scatter (samples SGLD[:, 0], samples_ SGLD[:, 1],
c=np.arange(niter)[:: —1], cmap="Reds’,

alpha=.2, label="SGLD")
ax3.legend ()

SGRLD

ax4 = fig.add_subplot(2,2,4)

#plt.subplot (224)

sns . kdeplot (original samples|[:, 0], original samples[:, 1])

ax4.scatter (samples. SGRLD [:, 0], samples. SGRLD[:, 1],
c=np.arange(niter)[:: —1], cmap='Reds’,
alpha=.2, label="SGRLD")

ax4.legend ()

fig .savefig(’unimodal Gaussian.png’)
" Bimodal Gaussian """

true data generation process (BiModal)
N=10000

mul = torch.zeros (2)

mu2 = torch.tensor ([5,5])

23

sigmal = torch.tensor ([[1, .9],
[—.9, 10]])

sigma2 = torch.tensor ([[10, —.9],
[.9, 10]])

dist2 = BiModalNormal (mul,mu2,sigmal ,sigma?2)
original samples2 = dist2.sample(N)
true density plot

sns . kdeplot (original samples2[:,0], original samples2[: 1])
SGLD
x = torch.tensor ([10., 0.], requires grad=True)

sgld = SGLD([x], eta=le—1, log_density=dist2.loss)
samples_ SGLD = []

for epoch in tqdm.tqdm(range(N)):
x = sgld.sample(x)
samples_ SGLD . append (x.data.clone ().detach ().T)

samples SGLD = np.array (np. vstack (samples SGLD))

SGRLD

x = torch.tensor ([10., 0.], requires grad=True)
sgrld = SGRLD ([x], eta=le—1, log_density=dist2.loss)
samples_ SGRLD = []

for epoch in tqdm.tqdm(range(N)):
x = sgrld.sample(x)
samples SGRLD . append (x.data.clone ().detach ().T)

samples SGRLD = np.array (np. vstack (samples. SGRLD))
4 SGHMC
x = torch.tensor ([10., 0.], requires grad=True)
sghme = SGHMC([x], alpha=0.01, eta=le—1, log_ density=dist2.loss)
samples_ SGHMC = []
for epoch in tqdm.tqdm(range(N)):
x = sghmc.sample (x)
samples SGHMC . append (x. detach (). clone ().T)
samples. SGHMC = np.array (np. vstack (samples SGHMC))

fig = plt.figure()

24

true density plot
axl = fig.add_subplot(2,2,1)
#plt.subplot (221)

axl.scatter (original_ samples2[:,0], original samples2[: 1],
c=np.arange(N)[:: —1], cmap='Reds’,
alpha=.2,label="True samples’)

sns . kdeplot (original samples2[:,0], original samples2[: 1])

axl.legend ()

#niter=1000
#plt.subplot (222)

SGHMC' plot

ax2 = fig.add_subplot(2,2,2)

sns . kdeplot (original _samples2[:, 0], original_ samples2[:, 1])

ax2.scatter (samples. SGHMC[:, 0], samples SGHMC|[:, 1],
c=np.arange(N)[:: —1], cmap='Reds’,

alpha=.2, label="SGHMC’)
ax2.legend ()

SGLD
ax3 = fig.add_subplot(2,2,3)
#plt.subplot (223)

sns. kdeplot (original _samples2[:, 0], original samples2[:, 1])
ax3.scatter (samples_ SGLD [:, 0], samples_ SGLD[:, 1],
c=np.arange(N)[:: —1], cmap='Reds’,

alpha=.2, label="SGLD")
ax3.legend ()

SGRLD

ax4d = fig.add_subplot(2,2,4)

#plt.subplot (224)

sns. kdeplot (original _samples2[:, 0], original samples2[:, 1])

ax4.scatter (samples. SGRLD [:, 0], samples. SGRLD[:, 1],
c=np.arange (N)[:: —1], cmap="Reds’,
alpha=.2, label="SGRLD")

ax4.legend ()

fig.savefig (’bimodal Gaussian.png’)
" Trimodal Gaussian """

true data generation process (TriModal)
N=10000

25

mul = torch.zeros (2)
mu2 = torch.tensor ([6,0])
mu3 = torch.tensor ([3,3])
mus = [mul,mu2, mu3]

sigmal = torch.tensor ([]

[—.
sigma3d = torch.tensor ([]
L1 1))
sigmas = [sigmal, sigma2, sigma3]
dist3 = MultiModalNormal (mus, sigmas)
original_samples3 = dist3.sample(N)
true density plot

1 9

9, 1]
sigma2 = torch.tensor ([[1,—.9],

9,111)

1

sns . kdeplot (original _samples3 [:,0], original_ samples3[:,1])
SGLD
x = torch.tensor ([3., 0.], requires grad=True)

sgld = SGLD([x], eta=le—1, log density=dist3.loss)
samples SGLD = []

for epoch in tqdm.tqdm(range(N)):
x = sgld.sample(x)
samples SGLD . append (x.data.clone ().detach ().T)

samples_ SGLD = np.array (np. vstack (samples_ SGLD))

SGRLD

x = torch.tensor ([3., 0.], requires grad=True)

sgrld = SGRLD([x], eta=le—1, log density=dist3.loss)
samples. SGRLD = []

for epoch in tqdm.tqdm(range(N)):
x = sgrld.sample(x)
samples SGRLD . append (x.data.clone ().detach ().T)

samples SGRLD = np.array (np. vstack (samples SGRLD))

4 SGHMC

x = torch.tensor ([3., 0.], requires grad=True)

sghme = SGHMC([x], alpha=0.01, eta=le—1, log density=dist3.loss)
samples. SGHMC = |[]

for epoch in tqdm.tqdm(range(N)):

26

x = sghmec.sample (x)
samples SGHMC. append (x.detach (). clone ().T)

samples SGHMC = np.array (np. vstack (samples SGHMC))
fig = plt.figure ()

true demnsity plot

axl = fig.add_subplot(2,2,1)

#plt.subplot (221)

axl.scatter (original samples3[:,0], original samples3[: 1],
c=np.arange (N)[:: —1], cmap="Reds’,
alpha=.2 label="True samples’)

sns . kdeplot (original samples3 [:,0], original samples3[:,1])

axl.legend ()

#niter=1000
#plt.subplot (222)

SGHMC' plot
ax2 = fig.add_subplot(2,2,2)
sns. kdeplot (original _samples3[:, 0], original samples3[:, 1])

ax2.scatter (samples. SGHMC[:, 0], samples SGHMC|[:, 1],
c=np.arange (N)[:: —1], cmap="Reds’,
alpha=.2, label="SGHMC")

ax2.legend ()

SGLD
ax3 = fig.add_subplot(2,2,3)
#plt.subplot (223)

sns . kdeplot (original samples3[:, 0], original samples3[:, 1])
ax3.scatter (samples SGLD [:, 0], samples_ SGLD[:, 1],
c=np.arange(N)[:: —1], cmap='Reds’,

alpha=.2, label="SGLD")
ax3.legend ()

SGRLD
ax4 = fig.add_subplot(2,2,4)
#plt.subplot (224)

sns . kdeplot (original samples3[:, 0], original samples3[:, 1])
ax4.scatter (samples SGRLD[:, 0], samples SGRLD[:, 1],
c=np.arange (N)[:: —1], cmap='Reds’,

alpha=.2, label="SGRLD")
ax4.legend ()

27

fig .savefig(’trimodal Gaussian.png’)
" QuadraModal Gaussian """

true data generation process (QudraModal)
N=10000

mul = torch.zeros (2)
mu2 = torch.tensor ([5,0])
mu3 = torch.tensor ([5,5])
mu4 = torch.tensor ([0,5])
mus = [mul,mu2, mu3, mu4 |
sigmal = torch.tensor ([[1, 0.],
0., 1))
sigma2 = torch.tensor ([[1,0.],
0..1]])
sigma3 = torch.tensor ([[1, 0.],
0., 1]])
sigma4 = torch.tensor ([[1,0.],
[.0,1]])
sigmas = [sigmal, sigma2, sigma3, sigmad]

dist4 = MultiModalNormal (mus, sigmas)
original samples4d = dist4.sample(N)
true density plot

sns . kdeplot (original samples4 [:,0], original samplesd [:,1])
SGLD
x = torch.tensor ([—10., 0.], requires grad=True)

sgld = SGLD([x], eta=le—1, log density=dist4.loss)
samples SGLD = []

for epoch in tqdm.tqdm(range(N)):
x = sgld.sample(x)
samples SGLD . append (x.data.clone (). detach ().T)

samples_ SGLD = np.array (np. vstack (samples_ SGLD))

SGRLD

x = torch.tensor ([—10., 0.], requires_grad=True)
sgrld = SGRLD([x], eta=le—1, log density=dist4.loss)
samples SGRLD = []

for epoch in tqdm.tqdm(range(N)):
x = sgrld.sample(x)

28

samples SGRLD . append (x.data.clone ().detach ().T)
samples_ SGRLD = np.array (np. vstack (samples_ SGRLD))

SGHMC

x = torch.tensor ([—10., 0.], requires_grad=True)

sghme = SGHMC([x], alpha 0.01, eta=le—1, log density=dist4.loss)
samples SGHMC = []

for epoch in tqdm.tqdm(range(N)):
x = sghmc.sample (x)
samples SGHMC . append (x. detach (). clone ().T)

samples. SGHMC = np.array (np. vstack (samples. SGHMC))
fig = plt.figure()

true density plot

axl = fig.add_subplot(2,2,1)

#plt.subplot (221)

axl.scatter (original_ samplesd4 [: ;0] , original samplesd4 [: 1],
c=np.arange (N)[:: —1], cmap=’Reds’
alpha=.2,label="True ;samples’)

sns . kdeplot (original samples4 [:,0], original samples4 [:,1])

axl.legend ()

#niter=1000
#plt.subplot (222)

SGHMC plot

ax2 = fig.add_subplot(2,2,2)

sns . kdeplot (original samples4 [:, 0], original samples4 [:, 1])

ax2.scatter (samples. SGHMC[:, 0], samples. SGHMC][:, 1],
c=np.arange (N)[:: —1], cmap=’Reds’,

alpha=.2, label="SGHMC")
ax2.legend ()

SGLD
ax3 = fig.add_subplot(2,2,3)
#plt.subplot (223)

sns . kdeplot (original samples4 [:, 0], original samplesd[:, 1])
ax3.scatter (samples SGLD[:, 0], samples. SGLD[:, 1],
c=np.arange (N)[:: —1], cmap=’Reds’,

alpha=.2, label="SGLD”)
ax3.legend ()

29

SGRLD
ax4 = fig.add_subplot(2,2,4)
#plt.subplot (224)

sns . kdeplot (original _samples4 [:, 0], original_ samples4 [:,
ax4.scatter (samples. SGRLD [:, 0], samples. SGRLD[:, 1],
c=np.arange (N)[:: —1], cmap="Reds’,

alpha=.2, label="SGRLD")
ax4.legend ()

fig.savefig (’quadramodal ,Gaussian.png’)

nnn sé sésé erl't?:ng nnn

1])

	Large-Scale and High-Dimension: Computational Challenges
	Preliminaries: Two Components
	Stochastic Gradient Descent(SGD)
	Continuous Dynamics
	Hamiltonian Dynamics and Hamiltonian Monte Carlo (HMC)
	Langevin Dynamics and Langevin Monte Carlo (MALA)

	Connecting Dynamics with SGD: SG-MCMC
	Framework
	Algorithms/ Samplers
	Stochastic Gradient Langevin Dynamics(SGLD)
	Stochastic Gradient Riemann Langevin Dynamics(SGRLD)
	Stochastic Gradient Hamiltonian Monte Carlo(SGHMC)

	Experiments
	Discussion and Bibliography
	Scalable Bayesian Inference
	Variational Inference and Optimization
	Deep Learning and Neural Networks

